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Abstract. On recent PC graphics cards, fully programmable parallel
geometry and pixel units are available providing powerful instruction
sets to perform arithmetic and logical operations. In addition to com-
putational functionality, pixel (fragment) units also provide an efficient
memory interface to local graphics data.
To take full advantage of this technology, considerable effort has been
spent on the development of algorithms amenable to the intrinsic par-
allelism and efficient communication on such cards. In many examples,
programmable graphics processing units (GPUs) have been explored to
speed up algorithms previously run on the CPU. In this paper, we will
demonstrate the benefits of commodity graphics hardware for the parallel
implementation of general techniques of numerical computing.

1 Introduction

Over the last couple of years, the evolution of GPUs has followed a tripled Moores
law, currently providing up to 222 million transistors compared to 50 million
on an Intel P4 Northwood CPU. Recent GPUs can be thought of as stream
processors, which operate on data streams consisting of an ordered sequence of
attributed primitives like vertices or fragments. GPUs can also be thought of as
SIMD computers, in which a number of processing units simultaneously execute
the same instructions on stream primitives. At various stages in the rendering
pipeline, GPUs provide parallel and fully programmable processing units that
act on the data in a SIMD-like manner. Each of these units itself is a vectorized
processor capable of computing up to 4 scalar values in parallel.

In recent years, a popular direction of research is leading towards the im-
plementation of general techniques of numerical computing on such hardware.
The results of these efforts have shown that for compute bound applications as
well as for memory bandwidth bound applications the GPU has the potential to
outperform software solutions [1–3, 6].

To initialize computations, the application program specifies polygons to be
rendered by sending a vertex stream to the GPU. This stream is automatically
distributed to the vertex units, where currently up to 6 of these units work in
parallel on the specified vertex information. The result of this computation is



Fig. 1. This figure illustrates the rendering pipeline as it is realized on recent PC
graphics cards.

sent to the rasterizer. The rasterizer maps the input vertex stream to a fragment
stream by computing the coverage of polygons in screen space. For each covered
pixel one fragment is generated thus increasing the number of stream primitives
in general. The fragment stream is processed by currently up to 16 fragment
units, which work in parallel on up to 4 scalars at a time. Vertex and fragment
units can concurrently access shared DDR3 memory. Such fetches can be exe-
cuted parallel to other operations, as long as these operations do not depend
on the retrieved value. In this way, memory access latency can often be hidden.
Figure 1 shows an overview of the basic architecture.

Both vertex and fragment processing units provide powerful instruction sets
to perform arithmetic and logical operations. C-like high level shading languages
[4, 5]in combination with optimizing compilers allow for easy and efficient access
to the available functionality. In addition, GPUs also provide an efficient mem-
ory interface to local data, i.e. random access to texture maps and frame buffer
objects. Not only can application data be encoded into such objects to allow
for high performance access, but rendering results can also be written to such
objects, thus providing an efficient means for the communication between suc-
cessive rendering passes.

2 Numerical Simulation on GPUs

To realize numerical simulations on the GPU, we have implemented a general
linear algebra framework that is based on the internal representation of vec-
tors and matrices as 2D textures. On top of these representations, intrinsically
parallel and streamable vector-vector and matrix-vector operations have been
implemented very efficiently. To simulate computations on a 2D grid, only one
quadrilateral covering as many fragments in screen space as there are grid cells
has to be rendered. The rasterizer generates a stream of exactly this number of
fragments, one for every vector/matrix component. In the fragment units, arith-
metic operations between pairs of input values are performed, and the result is
directly written to the output stream.

To combine the elements of one vector, we employ the well known reduce-
operation as implemented on parallel architectures. Therefore, quadrilaterals at



ever smaller size are rendered in consecutive rendering passes. In every pass, each
fragment reads four adjacent data values from the previous rendering result and
combines them using the specified operation. This process is repeated until one
single value is left, thus enabling the reduction of one vector in logarithmic time.

Fig. 2. Simulation of the Karman Vortex Street on a 256x64 Grid is shown. The simula-
tion and rendering runs at 400 fps using our GPU framework on current ATI hardware

The described linear algebra operations have been encapsulated into a C++
class framework, on top of which we have implemented implicit solvers for sys-
tems of algebraic equations. Using this framework, we demonstrate the solution
to the incompressible Navier-Stokes equations in 2D at quite impressive frame
rates, including boundary conditions, obstacles and simulation of velocities on a
staggered grid (see Figure 2).

Besides the fact that the GPU-based simulation framework outperforms
CPU-based solvers of about a factor of 10-15, running the simulation on the
GPU has another important advantage: Because simulation results already exist
on the GPU, they can be rendered immediately. In the following example these
results are rendered by injecting dye into the flow and by advecting the dye ac-
cording to the simulated flow field. Having the data already in graphics memory
avoids any data transfer between the CPU and the GPU.

Incompressible Navier-Stokes equations

Fluid phenomena like water and gaseous media can be simulated by the incom-
pressible Navier-Stokes equations. We solve for the velocity V = (u, v)T governed
by the these equations
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in two passes. First, by ignoring the pressure term an intermediate velocity is
computed. The diffusion operator is discretized by means of central differences,



and, as proposed in [11], we solve for the advection part by tracing the velocity
field backward in time. To make the resulting intermediate vector field free of
divergence, pressure is used as a correction term. Mass conservation of incom-
pressible media leads to a Poisson-Equation for updating this pressure term. This
equation is solved using a Conjugate-Gradient method build upon the numerical
framework described above.

In addition to the plain solution to the Navier Stokes equations as described
above we have integrated the following extensions to improve the simulation.

– We have integrated a mechanism that allows one to arbitrarily specify inflow
regions and characteristics. Therefore, the current inflow settings are stored
in the color components of a 2D texture map, which is interpreted as external
forces acting on the flow in every iteration of the simulation process.

– Instead of a collocated grid the entire simulation is run on a staggered grid
as shown in Figure 3. In this way, centered space derivatives use successive
points of the same variable, and the dispersion characteristics is improved
because the effective grid length is halved. Furthermore, we can now handle
arbitrarily positioned obstacles exhibiting special boundary conditions very
effectively.

– To preserve vorticity on the regular staggered grid we have integrated vortic-
ity confinement [12] into our simulation code. At each grid point, a fragment
shader computes

vc = ñ × (∇× ω)

where ñ = ∇|ω|/|∇|ω|| is a unit vector pointing towards the centroid of the
vortical region, and ω is the vorticity vector. This vector is added to the
velocity to convect vorticity towards the centroid.
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Fig. 3. The image shows a staggered grid with obstacles (grey) and how the velocity
values at the obstacle borders are mirrored to match the border conditions.

In addition to the plain numerical simulation on the GPU we will now given
an example how the results of this computation, which is stored in the graphics



memory can be reused for visualization. This visualization is done without the
bus transfer bottleneck.

3 GPU Particle Tracing

In real-world fluid flow experiments, external materials such as dye, hydrogen
bubbles, or heat energy are injected into the flow. The advection of these external
materials can create stream lines, streak lines, or path lines to highlight the
flow patterns. Analogies to these experimental techniques have been adopted by
scientific visualization researchers. Numerical methods and three-dimensional
computer graphics techniques have been used to produce graphical icons such
as arrows, motion particles, stream lines, stream ribbons, and stream tubes that
act as three-dimensional depth cues.

Over the last decade, such methods have been investigated intensively in
terms of numerical accuracy and grid structures, as well as acceleration, imple-
mentation and perception issues. While these techniques are effective in revealing
the flow fields local features, they lack in that they can usually not produce and

display the amount of graphical icons needed to visually convey large amounts
of three-dimensional directional information at interactive rates.

This is due to the following reasons: First, both numerical and memory band-
width requirements imposed by accurate particle integration schemes are too
high as to allow for the simultaneous processing of large particle sets. Second,
even in case that the graphical icons to visualize the flow characteristics can
be computed at sufficient rates, rendering of these icons includes the transfer of
data to the graphics system and thus limits the performance significantly.

To overcome the limitations of classical particle based techniques and global
imaging techniques we provide a system for real-time integration and rendering
of large particle sets. Contrarily to topology or feature based techniques, which
aim at extracting relevant flow structures thus reducing the information to be
displayed at once [7–10], we attack the problem of 3D vector field visualization
by means of interactivity. We provide the user with a mechanism to interactively
guide the exploration of flow structures at arbitrary resolution. Our approach
enables virtual exploration of high resolution flow fields in a way similar to real-
world experiments.

Therefore, we have integrated numerical integration schemes into a GPU sys-
tem for interactive exploration of flow fields [13]. It takes advantage of OpenGL
memory objects (SuperBuffers) to store particle positions on the graphics card.
Programmable fragment shaders implement interpolation methods up to order 3,
and construct stream lines and stream bands. Since memory objects can either
be interpreted as texture maps accessible in the fragment shader program or
as vertex arrays used as input to the geometry units, particle tracing can be
entirely performed on the GPU without any read back to application memory.

Our implementation exploits a feature of recent ATI graphics hardware that
allows graphics memory to be treated as a render target, a texture, or ver-
tex data. This feature is presented to the application through an extension to



Fig. 4. High performance particle tracing on the GPU.

OpenGL called SuperBuffers. The interface allows the application to allocate
graphics memory directly, and to specify how that memory is to be used. This
information, in turn, is used by the driver to allocate memory in a format suitable
for the requested uses. When the allocated memory is bound to an attachment

point (a render target, texture, or vertex array), no copying takes place. The net
effect for the application program therefore is a separation of raw GPU memory
from OpenGL’s semantic meaning of the data. Thus, SuperBuffers provide an
efficient mechanism for storing GPU computation results and later using those
results for subsequent GPU computations.

In figure 4 we demonstrate the effectiveness of our approach for particle
integration and rendering. About 42 millions of particles per second are traced
through the flow using an Euler integration scheme. This number is reduced to
21 millions and 12 millions, respectively, using schemes of 2nd and 3rd order
accuracy, respectively. It is interesting to note that a CPU version of particle
tracing in 3D flow fields roughly takes about a factor of 30 longer than the
GPU version. This is mainly due to the following reasons: First, the advection
step extremely benefits from the numerical compute power and high memory
bandwidth of the parallel fragment units on our target architecture. Second, the
transfer of that many particles to the GPU in every frame of the animation
imposes a serious limitation on the overall performance.

4 Future Work

In order to process large simulation domains, we can exploit distribution and
parallelization functionality present in common multiprocessor architectures For
interactive steering of simulations, we envision a distributed approach that makes
use of the low-latency node interconnectors and high performance intra-node bus
architectures to provide adequate user response times.

The whole system is initialized by computing a regular partition of the sim-
ulation domain in parallel that has the least edge-cut property. The obtained



information is processed by a program on each node, which assembles the data
for all GPUs on this node. A dedicated thread is responsible for uploading the
data to the GPUs in order to avoid synchronization delays. Now each GPU pro-
cesses a part of the sub-domain that is obtained by a regular split. The boundary
conditions are read-back and are redistributed to the adjacent regions in a hier-
archical way by first updating the boundaries on each node and then between the
nodes on a peer-to-peer basis. Note that this perfectly exploits the high band-
width on the upcoming PCI-Express graphics bus and reduces at the same time
the bandwidth needed on the node interconnect. The packets transferred at this
level are therefore small and allow efficient inter-node transport across the low
latency interconnector. After completing a configurable number of simulation
time-steps, a visualization of the simulation result is computed on each client
node and the partial results, i.e. images, are transferred back to the master node
for display. The packet size of this final communication step is rather big, so
we can efficiently maintain the high bandwidth PCI-Express path on the client
nodes all through to the master node.

5 Conclusion

In this work, we have described a general framework for the implementation
of numerical simulation techniques on graphics hardware. For this purpose, we
have developed efficient internal layouts for vectors and matrices. By considering
matrices as a set of diagonal or column vectors and by representing vectors as
2D texture maps, matrix-vector and vector-vector operations can be accelerated
considerably compared to software based approaches.

In order to demonstrate the effectiveness and the efficiency of our approach,
we have described a GPU implementation to numerically solve the incompress-
ible Navier-Stokes equations. The results have shown that recent GPUs can not
only be used for rendering purposes, but also for numerical simulation and inte-
gration. The combination of shader programs to be executed on the GPU and
new concepts like memory objects allow one to carry out numerical simulations
efficiently and to directly visualize the simulation results.
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