
gridlib: Flexible and Efficient Grid Management for
Simulation and Visualization

�

Frank Hülsemann
�
, Peter Kipfer

�
, Ulrich Rüde

�
, and Günther Greiner

�
�

System Simulation Group of the Computer Science Department,
Friedrich-Alexander University Erlangen-Nuremberg, Germany,

frank.huelsemann@cs.fau.de,�
Computer Graphics Group of the Computer Science Department,

Friedrich-Alexander University Erlangen-Nuremberg, Germany,
kipfer@cs.fau.de

Abstract. This paper describes the gridlib project, a unified grid management
framework for simulation and visualization. Both, adaptive PDE-solvers and in-
teractive visualization toolkits, have to manage dynamic grids. The gridlib meets
the similar but not identical demands on grid management from the two sides,
visualization and simulation. One immediate advantage of working on a com-
mon grid is the fact that the visualization has direct access to the simulation re-
sults, which eliminates the need for any form of data conversion. Furthermore,
the gridlib provides support for unstructured grids, the re-use of existing solvers,
the appropriate use of hardware in the visualization pipeline, grid adaptation and
hierarchical hybrid grids. The present paper shows how these features have been
included in the gridlib design to combine run-time efficiency with the flexibil-
ity necessary to ensure wide applicability. The functionality provided the gridlib
helps to speed up program development for simulation and visualization alike.

1 Introduction

This article gives an overview of the gridlib1 grid management project, its aims and
the corresponding design choices [5], [6], [7], [8]. The gridlib combines grid manipu-
lation requirements of mesh based PDE-solvers and visualization techniques into one
single framework (library). Thus it offers developers of simulation programs a common
interface for the computational and graphical parts of a project.

For interactive computer graphics, the efficient manipulation of grids and the data
attached has always been important. In the numerical PDE community, it is the de-
velopment of adaptive h-refinement algorithms in several space dimensions that led to
recognising grid management as a worthwhile task in its own right. Despite the shared
need to administer dynamically changing grids, there seems to be little joint work. Many

�
This project is funded by a KONWIHR grant of the Bavarian High Performance Computing
Initiative.

1 This is a temporary name. Choices for the final name of the whole project are currently being
considered.

PDE-packages, such as deal.II2 or Overture3 for example, include tools for the visual-
ization of the results. However, these graphics components are usually tied to the solver
part of the package and as such, they are too specific to be widely applicable. Like-
wise, although the numerous visualization libraries available, such as AVS4 or VTK5

for example, obviously display gridded data, they delegate the work of integrating the
visualization into the solver to the solver developers. This assumes that an integration
is possible at all, which is not obvious, given that some toolkits modify the submitted
data for optimisation purposes.

The gridlib is a joint effort of three groups to exploit the synergy offered by one
common grid management. The development is shared mainly between a visualization-
and a simulation group, while the third, from computational fluid dynamics, provides
valuable input from the users’ perspective. Although the overall task of grid manage-
ment is shared, the two communities, simulation and visualization, put different em-
phasis on the features of a grid administration software. The high performance com-
puting community has demonstrated time and again that it is willing to put runtime
efficiency (as measured in MFLOPS) above all other considerations. Visualization is
a much more interactive process, which has to be able to respond to the choices of a
user with very low latency. Consequently, visualization requirements result in higher
emphasis on flexibility than is the norm (traditionally) in the HPC context, willing to
trade CPU performance and memory usage for interactivity. This paper shows how the
gridlib meets the demands from both sides. After an overview of the gridlib system ar-
chitecture in Sect. 2, the topic of flexibility is discussed in Sect. 3. This is followed by
the efficiency considerations in Sect. 4, before the main points of the paper are summed
up in the conclusion in Sect. 5.

2 System architecture of the gridlib

The gridlib is a framework library for the integration of simulation and visualization on
adaptive, unstructured grids. Its infrastructure serves two main purposes. First, it sup-
ports developers of new simulation applications by providing subsystems for I/O, grid
administration and grid modification, visualization and solver integration. Second, its
parametrised storage classes allow (in principle) the re-use of any existing solvers, even
those only available in binary format. For the special group of solvers that do not per-
form grid management themselves, the gridlib can provide plug-and-play functionality.

This high level of integration is achieved by three abstraction levels:

1. The lowest level offers an interface to describe the storage layout. This is the part
of the library that has to be adapted when integrating an existing solver.

2. The level above implements abstraction of the geometric element type. Relying on
the storage abstraction, it provides object oriented element implementations for the
higher abstraction levels.

2 deal.II homepage: http://gaia.iwr.uni-heidelberg.de/˜deal/
3 Overture homepage: http://www.llnl.gov/CASC/Overture/overview.html
4 AVS homepage: http://www.avs.com
5 VTK homepage: http://public.kitware.com/VTK

3. The highest level offers the interface to operations on the whole grid. It employs
object oriented design patterns like functors for frequently needed operations.

3 Flexibility

The gridlib intends to be widely applicable. From a simulation perspective, this implies
that the user should be able to choose the grid type and the solver that are appropriate
for the application. For the visualization tasks, the gridlib must not assume the existence
of any dedicated graphics hardware. However, if dedicated hardware like a visualization
server is available, the user should be able to decide whether to use it or not. The fol-
lowing subsections illustrate how these aims have been achieved in the gridlib design.

3.1 Unstructured Grids

The scientific community remains divided as to what type of grid to use when solving
PDEs. As a consequence, there are numerous different grid types around, ranging from
(block-)structured over hybrid up to unstructured grids, each of them with their ad-
vantages and problems and their proponents. A grid software that intends to be widely
applicable cannot exclude any of these grid types. Thus, the gridlib supports completely
unstructured grids6, which include all other more specialised grid types. Furthermore,
the gridlib does not make any assumptions about the mesh topology nor the geometrical
shape of the elements involved. Currently supported are tetrahedra, prisms, pyramids,
octahedra and hexahedra. The gridlib is designed in such a way that other shapes can
be added easily using object oriented techniques.

3.2 Integrating existing solvers

As mentioned before, the gridlib supports the re-use of existing solvers, even those only
available in binary form. To this effect, the gridlib provides the grid data in the format
required by a given solver. For example, this could imply storing the grid data in a
particular data file format or arranging certain arrays in main memory to be passed as
arguments in a function call. Clearly, for this approach to work, the input and output for-
mats of the solver have to be known. In this case, the integration involves the following
steps:

1. Implementation of the storage format for the element abstraction.
2. Creation of an object oriented interface, which can be inherited from a provided,

virtual interface. This step effectively “wraps” a potentially procedural solver into
an object oriented environment.

3. Link the solver together with the gridlib.

Note that in many cases, the second step can be performed automatically by the com-
piler through the object-oriented template patterns already provided by the gridlib. If
the source code of the solver can be modified, the first two steps can be combined,
which results in the native gridlib storage format to be used throughout.

6 One repeated argument against the use of unstructured grids in the scientific computing com-
munity is their alleged performance disadvantage. We will return to this point in Sect. 4.2.

3.3 Visualization Pipeline

In the gridlib, the visualization is based on a attributed triangle mesh which in turn is
derived from the original data or a reduced set of it. By working directly on the grid data
as provided by the grid administration component of the library, the visualization sub-
system can exploit grid hierarchies, topological and geometrical features of the grid and
the algorithms for grid manipulation. This approach provides a common foundation for
all visualization methods and ensures the re-usability of the algorithmic components.

In the visualization pipeline, the data is represented in the following formats:

1. As simulation results on the compute grid
2. As data on a modified grid (reduced, progressive, changed element types, ...)
3. As visualization geometries (isosurfaces, stream lines, ...)
4. As bitmap or video (stored in a file or displayed immediately)

These stages can be distributed across several machines. In the context of large scale
simulations, a common distribution of tasks involves a compute node for the first step,
a visualization server for the second and third, and lastly, the user’s workstation for the
forth. For a given project, these three functions, compute server, visualization server
and front end workstation, have to be assigned to the available hardware. The gridlib
makes provisions for different configurations that help the user to adequately match the
given hardware to the tasks. The following factors influence the visualization pipeline:

1. Availability and performance of an interactive mode on the compute node. This is
often an issue on batch-operated super computers.

2. Bandwidth and latency of the involved networks.
3. Availability and performance of a dedicated visualization server.
4. Storage capacity and (graphics-) performance of the front end workstation.

Given the concrete configuration, it is the user who can decide how to trade-off re-
quirements for interaction with those for visualization quality. Conceptually, the gridlib
supports different scenarios:

– Remote rendering on the compute node. Being based on the complete set of high
resolution simulation results, this approach yields the maximum visualization qual-
ity. However, on batch-operated machines, no form of interaction is possible.

– Postprocessing of the simulation results on the compute node and subsequent trans-
fer of a reduced data set to the visualization server or front end. Once the simulation
results are available, this strategy offers the maximum of interaction in displaying
the results but places high demands the servers and the networks, as even reduced
data sets can still be large in absolute terms.

– Local rendering of remotely generated visualization geometries. The user experi-
ences (subjective) fast response times but can only work on a given number of data
sets. This approach allows high visualization quality but requires fast networks and
high storage facilities.

– Two stage rendering. First, the user determines the visualization parameters (view
point, cut plane, ...) on a reduced quality set, then transfers these parameters to the
compute node, where they will be used for remote rendering at maximum quality.

execute on supercomputer
or on workstation

Partition

Partition Simulation Visualization

FramebufferI/O Subsystem

Simulation Visualization

Rendering

Rendering

Fig. 1. Data flow for the parallel software renderer: The renderer processes the distributed sim-
ulation results concurrently before merging the individual parts together into the final picuture.
The diagram emphasises the various stages in the visualization pipeline that can be assigned to
the available hardware.

Supporting all these scenarios is ongoing work. Several components have already
been implemented. Progressive mesh techniques allow to trade visualization quality for
faster response time (resolution on demand), see [5]. Slice- and isosurfaces geometries
can be computed and displayed via various rendering options, see [8]. The most gener-
ally applicable renderer is a software-only implementation, which is useful on machines
without dedicated graphics hardware. It can be run transparently in parallel on any mul-
tiprocessor machine with MPI support. Figure 1 illustrates the data flow for the parallel
software renderer. The alternative is tuned for hardware accelerated OpenGL environ-
ments. Thus the gridlib lets the user choose a compromise between visualization quality
and interaction.

4 Efficiency

This section introduces the two main features of the gridlib that are useful in the devel-
opment of high performance solvers, for which maximum runtime efficiency is impor-
tant. These two features are the provision of grid adaptation techniques and the concept
of hierarchical hybrid grids.

4.1 Grid adaptation

Adaptive h-refinement techniques, usually based on error estimators, have attracted con-
siderable interest in the numerical PDE community over the last twenty years, see, for
instance, [2], [1]. For many applications, these techniques are well-established and re-
liable error-estimators are available [1], [9], [3]. By providing functions for the uni-
form, adaptive or progressive subdivision and coarsening of the mesh, the gridlib is a

well-suited platform for the implementation of h-refinement algorithms. The user need
only specify a criterion that marks the grid cells to be subdivided. The gridlib’s refine-
ment algorithm performs the subdivision and ensures that the resulting grid is consistent
and that hanging nodes are avoided (red-green refinement). For subdividing tetrahedra,
the algorithm of Bey [4] has been chosen because of the small number of congruency
classes it generates.

Provided that the user contributes a sharp error estimator, the gridlib features make
it easy to generate solution adapted unstructured grids. Such grids are the essential tool
to improve the accuracy of the solution for a given number of grid cells.

4.2 Efficiency limits of unstructured grids and what to do about it

It is important to note that adaptive refinement of unstructured grids (alone) cannot over-
come the problem of low MFLOPS performance when compared to (block-)structured
approaches.

The performance problem of solvers on unstructured grids results from the fact
that the connectivity information is not available at compile time. Hence the resulting
program, although very flexible, requires some form of book-keeping at run time. In
structured codes, the connectivity is known at compile time and can be exploited to
express neighbourhood relations through simple index arithmetic.

The following, deliberately simple example illustrates the difference between the
two approaches. Given the unit square, which is discretised into square cells of side
length

�
using bi-linear elements. An unstructured solver “does not see” the regularity

of the grid and hence has to store the connectivity data explicitly. In pseudo code, an
unstructured implementation of a Gauss-Seidel step with variable coefficients in the
unstructured solver reads as follows:

for i from first vertex to last vertex:
rhs = f(i)
for j from 1 to number_of_neighbours(i)
rhs = rhs - coeff(i,j)*u(neighbour(i,j))

u(i) = rhs/coeff(i,i)

Contrast this to a structured implementation (assuming that this ordering of the for-
loops is appropriate for the programming language):

for i from first column to last column:
for j from first row to last row:
u(i,j)=(f(i,j)-c(i,j,1)*u(i-1,j-1)-c(i,j,2)*u(i-1,j)

-c(i,j,3)*u(i-1,j+1)-c(i,j,4)*u(i+1,j-1)
-c(i,j,5)*u(i+1,j) -c(i,j,6)*u(i+1,j+1)
-c(i,j,7)*u(i,j+1) -c(i,j,8)*u(i,j-1))/c(i,i)

The work as measured in floating point operations is the same in both implementa-
tions, but their run-time performance differs significantly as the second version, being
much more explicit, lends itself much better to compiler optimisation than the first one.
On one node (8 CPUs) of a Hitachi SR8000 at the Leibniz Computing Centre in Munich,

Fig. 2. Bottom left: coarsest base grid, bottom right: geometry grid after one unstructured refine-
ment step, top row: compute grids after two regular subdivision steps of the respective coarse
grids below

the MFLOPS rate of the (straightforward) structured version is a factor of 20 higher than
the one of the similarly straightforwardly implemented unstructured algorithm.

The gridlib introduces the concept of hierarchical hybrid grids to overcome the per-
formance penalty usually associated with unstructured grids while retaining their geo-
metric flexibility.

The main idea behind the hierarchical hybrid grids is to deal with geometric flexi-
bility and computing performance on different grid levels. The coarse grid levels are in
general unstructured and ensure the geometric flexibility of the approach. The coarse
grids are nested in the sense that the finer ones are generated through uniform or adap-
tive refinement from the coarser ones. The finest unstructured grid is assumed to resolve
the problem domain adequately and is therefore referred to as the geometry grid. The
fine grids, on which the computations are to be carried out, are generated through reg-
ularly subdividing the individual cells of the geometry grid. Figure 2 illustrates the
concept.

As shown above, it is essential for high floating point performance that the imple-
mentation of the computing algorithms takes the regular structure of the compute grid
within each cell of the geometry grid into account. Given that the compute grid is only
patchwise regular, some fraction of the computations still require unstructured imple-

mentations. Obviously, the finer the compute grid, the more the overall floating point
performance is dominated by the contribution from the structured parts.

The following discussion confirms this expectation for a vertex based algorithm
like Gauss-Seidel. Let �	� be the number of vertices in the (unstructured) geometry
grid and ��
 be the number of vertices in the structured refinements. The unstructured
algorithm achieves �� MFLOPS while the structured part runs at ��
 MFLOPS. Under
the assumption that ����� , the number of floating point operations per vertex, is the same
for both grid types (as it was in the Gauss-Seidel example above), then the execution
time of one Gauss-Seidel iteration over the compute grid is given by

� ��� � ���
���

� �
	� � ���
��
 � (1)

Dividing the total number of operations, �	��� ��� ��� � ��
�� , by this execution time, one
finds the MFLOPS value for the whole grid, � say, to be

��� � � � � �
 � � � � �

������
 � ��
���� � (2)

Introducing the fine to coarse ratio
 !� �
���#"	$ �
 �% � � �

and the speed-up factor & for structured implementations over unstructured ones

&'� ��
� � "�$ �
 �(& � � �*)
� is given by

�+� & �
�-, �
& � ���) (3)

which for /.10 tends to

24365768:9 ��� 24365768:9 & �
�-, �

& � � � �;&<� � �;�
 � (4)

In other words, provided the structured part is sufficiently large, the floating point per-
formance on a hierarchical hybrid grid is dominated by its structured part, while retain-
ing the geometric flexibility of its unstructured component.

The interface to the hierarchical hybrid grids is still under construction. However, as
the experience from the Hitachi shows, the speed-up factor & can be as large as 20. This
shows that the extra work of tuning the algorithm to the regularity of the grid inside the
coarse grid cells is well worth the effort.

5 Conclusion

The paper presented the main features of the grid management framework gridlib. It
combines the grid management requirements of both, visualization and simulation de-
velopers, into a single framework. By providing subsystems for frequently needed tasks

in PDE solvers, such as I/O, adaptive grid refinement and, of course, visualization, the
gridlib helps to speed up the development of such programs.

The article described the main features of the gridlib from the two perspectives
of flexibility and (run-time) efficiency. Through its support of unstructured grids and
numerous cell geometries, the gridlib is widely applicable. In case a particular cell ge-
ometry is not already included, the object-oriented design of the gridlib ensures that the
user can add the required object easily. It was shown how existing solvers, that do not
include any grid management, can be combined with the gridlib, so that these solvers,
too, can benefit from the visualization facilities of the framework. For the visualiza-
tion of large scale simulations, the gridlib supports different hardware scenarios, from
which the user can choose to meet the project-specific requirements concerning visual-
ization quality and interactivity. Its provision of algorithms for the consistent, adaptive
subdivision of unstructured grids in three space dimensions makes the gridlib an ideal
platform for implementing and experimenting with adaptive h-refinement methods. To
close the gap in MFLOPS performance between unstructured and structured grids, the
gridlib introduces the concept of hierarchical hybrid grids. This approach employs a hi-
erarchy of two different grid types on the different levels to combine the advantages of
the unstructured grids (geometric flexibility) with those of structured ones (high float-
ing point performance). The coarse levels are made up of nested, unstructured grids.
The patchwise structured grids on the finer levels are constructed through repeated reg-
ular subdivision of the cells of the finest, unstructured grid. Adapting the algorithm
to take the grid structure into account increased the floating point performance of a
Gauss-Seidel iteration inside the patches on a Hitachi SR8000 by a factor of twenty.
The promise of the approach is therefore evident. However, more work in specifying
user interfaces for the hierarchical hybrid grids among other things has to be done.

6 Acknowledgements

The authors wish to thank Dr. Brenner from the fluid dynamics group of Erlangen Uni-
versity for helpful discussions, U. Labsik, G. Soza from the Computer Graphics Group
at Erlangen University for their input concerning geometric modelling and mesh adap-
tivity, S. Meinlschmidt from the same group for his work on the various options in the
visualization pipeline, M. Kowarschik from the System Simulation Group, also at Er-
langen University, for his insights in exploiting grid regularity for iterative methods.
As mentioned in the introduction, this project is funded by a KONWIHR grant of the
Bavarian High Performance Computing Initiative, which provided the access to the Hi-
tachi SR8000.

References

1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comp.
Methods Appl. Mech. Engrg. 142 (1997) 1–88

2. Babuska, I., Rheinboldt, W. C.: Error estimates for adaptive finite element computations.
SIAM J. Numer. Anal. 15 (1978), 736–754

3. Becker, R., Rannacher, R.: Weighted A posteriori error control in FE methods. IWR Preprint
96-1, Heidelberg, 1996

4. Bey, J.: Tetrahedral Grid Refinement. Computing 55 (1995), 355–378
5. Labsik, U., Kipfer, P., Meinlschmidt, S., Greiner, G.: Progressive Isosurface Extraction from

Tetrahedral Meshes. Pacific Graphics 2001, Tokio, 2001
6. Labsik, U., Kipfer, P., Greiner, G.: Visalizing the Structure and Quality Properties of Tetrahe-

dral Meshes. Technical Report 2/00, Computer Graphics Group, University Erlangen, 2000
7. Greiner, G., Kipfer, P., Labsik, U., Tremel, U.: An Object Oriented Approach for High Perfor-

mance Simulation and Visualization on Adaptive Hybrid Grids. SIAM CSE Conference 2000,
Washington, 2000

8. Kipfer, P., Greiner, G.: Parallel rendering within the integrated simulation and visualization
framework “gridlib”. VMV 2001, Stuttgart, 2001

9. Süli, E.: A posteriori error analysis and adaptivity for finite element approximations of hyper-
bolic problems. In: Kröner, D., Ohlberger, M., Rohde C. (Eds.): An Introduction to Recent
Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computa-
tional Science and Engineering 5, 123–194 Springer-Verlag, 1998

