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Abstract

Over the last years, computational fluid dynamics
(CFD) research has developed several advanced nu-
meric methods for simulating fluid transport. The
models being used have grown considerably in size
and so have the computed results. Computer graph-
ics research has developed efficient methods for vi-
sualization and rendering, to create images of the
computed result that contain significant informa-
tion. The whole process of using CFD methods
in engineering however involves many iterations
through the model-simulation-visualization cycle.
When using reasonably detailed models, the whole
cycle suffers from delays produced by the neces-
sary data conversion and data transport. We have
developed a solution to this problem by designing
an object-oriented framework for integrating simu-
lation and visualization. Computation routines are
free to use the provided grid management interface
or can be integrated on a binary level by specify-
ing the expected memory layout to the framework.
Both simulation and visualization algorithms can be
run on the parallel computer. The rendering subsys-
tem therefore has access to the full grid resolution
to produce images of high visual quality.

Keywords: Parallel Rendering, Visualization,
CFD Simulation

1 Introduction

The CFD community has developed two major
groups of fluid simulation strategies: finite ele-
ment solvers for the full Navier-Stokes equation that
can operate on unstructured grids [20, 17, 18] and
Lattice-Boltzmann methods for fast simulation on
regular Cartesian grids [19, 13]. While the latter
are relatively new methods working on highly spe-

cialized structures, there is a rich choice of methods
available for the Navier-Stokes equation working on
geometry. The system our renderer is integrated in,
is especially intended for geometry based solvers
working on unstructured adaptive hybrid grids.

For realistic and practically relevant simula-
tion results to nowadays problems, the model size
has grown continuously resulting in dataset sizes
that easily surpass the memory available even on
larger workstations. Therefore, simulations are
normally run on a highly specialized supercom-
puter which provide high numerical performance
and large memory resources. Unfortunately they
lack most often a graphical user interface and/or
hardware accelerated graphics boards for render-
ing. Therefore, the simulation results must be trans-
ferred back to the local workstation for visualiza-
tion. Because of the size of the computed result
dataset, reduction methods must be applied to be
able to handle the result with the limited resources
of the workstation. This is time consuming and can
introduce significant errors [4, 16].

1.1 Related Work

Our approach is to integrate both the simulation
and visualization process on the simulation ma-
chine. Apart from data transfer considerations,
this gives the visualization subsystem access to the
full detail of the simulation grid: The gridlib is a
object-oriented framework library for building in-
tegrated simulation-visualization systems for un-
structured adaptive hybrid grids. There is a num-
ber of already existing remote visualization systems
[5, 15, 14, 4, 11].

What sets the gridlib apart from most other ap-
proaches is the basic concept of efficient automatic
data storage while maintaining direct array access
like referencing a char[]. Primitive objects are
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triangles, quadrilaterals, tetrahedrons, hexahedrons,
prisms, pyramids, octahedrons, vertices and edges.
They really exist as a class in the standard object-
oriented sense and can be constructed and destruc-
ted with new and delete. The developer never
has to worry about the actual implementation. Fur-
thermore, there is a set of robust algorithmic op-
erators for algorithmic abstraction and integration
of high performance procedural programming lan-
guage concepts and for binary-level integration of
commercial CFD code.

The following section provides a short overview
of the framework by presenting the two main ab-
straction concepts. Section 3.1 explains the imple-
mentation of the visualization and rendering sub-
system. After that, we present some results and con-
clude in section 5.

2 System overview

The gridlib project uses several advanced object-
oriented paradigms in order to introduce three ma-
jor abstraction layers as depicted in figure 1: A layer
for grid topology and grid handling algorithms, one
layer for abstraction of element type and one layer
for abstraction of storage layout. In the follow-
ing, we review the two most important concepts of
storage and algorithmic abstraction that are used to
build the three layers [8, 9].
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Figure 1: Overview of the gridlib system design.

In order to provide abstraction with respect to the
memory layout of storage space, the data of each
primitive object type is taken care of by a memory-
pool. Each pool implements a specific storage lay-

out and packages consecutive items in a linear ad-
dressable space. In general, each primitive object
type is associated with a specific memory-pool im-
plementation. Note that a memory-pool has no no-
tion of what kind of data is stored in it. The pro-
grammer therefore can choose any granularity and
ordering of data-packing (sequence of structs vs.
struct of sequences).

The very concrete nature of each memory-pool
implementation is extended by a design pattern
called external polymorphism [3, 6] to make use
of object-orientation. It builds a virtual inheritance
tree externally to the implementations of the par-
ticipating objects with a pure virtual interface on
top of the tree. Method calls are routed by suffi-
ciently global adaptor routines to the actual imple-
mentation. Because of the common functionality of
the memory-pools, it’s very easy to construct these
adapters using templates.

Now we are able to view all the diverse memory-
pool implementations as related by inheritance, al-
though they aren’t, which makes writing higher
level object-oriented routines much easier. At the
same time we are able to give pointers to the data
to procedural third-party code. The memory layout
prescribed by the commercial code is maintained
by the memory-pool and abstracted for the object-
oriented grid handling of the gridlib.

The intermediate element abstraction layer in fig-
ure 1 is a direct result of the storage abstraction by
formulating a common (pure virtual) interface as a
parent interface of the abstracted memory layout.
The uppermost level provides abstraction of algo-
rithms through a mesh container. It is responsible
for encoding topology and geometry of a mesh by
exclusively using the abstract element interfaces be-
low. Therefore it’s algorithms work on any given
storage layout. It acts as a pure container, which
means that it’s algorithms may not make any as-
sumption about the implementation of the elements
or the grid topology.

The second important concept deals with the ef-
ficient formulation of algorithms on the mesh level:
The mesh container provides algorithmic abstrac-
tion. Practically every algorithm dealing with a grid
performs forall iterations on its elements, ver-
tices or edges. We therefore provide a concept that
supports this particular algorithmic pattern. One
can write small code entities, called functors, that
are to be applied to all elements, vertices or edges
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of the mesh. The mesh container has methods that
take any such functor definition, construct the func-
tor and apply it to every contained element, vertex
or edge. Because a functor uses the abstract element
interfaces below, one can use the full possibilities of
overloading, inheritance and runtime type informa-
tion when writing one.

A functor is implemented by overloading the de-
fault operator operator() of a lightweight class.
The mesh container provides iterators for executing
the functor on every grid element. Note that this
concept is very useful for parallelization because of
the clear separation and encapsulation of the work-
ing domain of the functor: Depending on the point
in time when a functor is constructed, its private
data members reside in shared or thread-specific
memory. The actual algorithm that is formulated
as a sequence of functor applications to the mesh
is called skeleton program. The limited actions a
single functor performs, along with the expressive
power of the skeleton program helps the readabil-
ity of the code, minimizes the side-effects the small
code block can produce and therefore eases mainte-
nance and code reuse.

Also note that a functor must be “sufficiently”
global with respect to the skeleton algorithm. A
functor therefore can be private to a specific class,
can be inherited and serve a whole subtree or can
be absolutely global to provide for example a con-
ditional delete call on the abstract top-level in-
terface to remove all marked elements, vertices or
edges. Putting some generally useful functors into
the global scope provides powerful support for code
reuse of skeleton algorithms on the mesh level and
for providing library functionality to developers.

3 Visualization and Rendering

The integrated visualization and rendering system
directly works on the abstraction layers provided
and therefore is completely independed of the mem-
ory layout and numerical solver used. It features
a geometric primitive renderer for transformations,
clipping and lighting, from which multiple rasteriz-
ers are derived (see figure 3). There are software
implementations for all algorithms and OpenGL
wrappers for hardware accelerated rendering on
screen or into a memory graphics context. This
makes three visualization scenarios possible:
� remote rendering on the parallel computer us-

ing the high resolution simulation grid by
specifying the rendering parameters as com-
mand line arguments

� post-processing of the simulation grid, trans-
ferring it back to the local high-end worksta-
tion and using hardware accelerated local ren-
dering

� hybrid rendering by manipulating a low reso-
lution model on the local workstation, trans-
ferring the parameters and rendering the high
resolution grid on the parallel machine

Note that especially the last scenario allows run-
ning visualization and simulation in parallel and
even makes steering of the simulation possible, if
supported by the numerical solver [1]. We have
implemented the first two scenarios. In this paper
we focus on the remote rendering on the supercom-
puter.

3.1 Visualization

The visualization subsystem works on unstructured
hybrid adaptive grids. It offers methods for gener-
ating and displaying boundary surfaces, isosurfaces
and slices of the grid. Scalar values can be mapped
onto the slices. All methods produce triangulated
geometries which are handled by the rendering sub-
system. After processing all of the triangles by the
geometric primitive renderer (compare figure 3), an
image can be drawn into any on-/ off-screen raster-
ization context.

For displaying scalar volume data, the visualiza-
tion subsystem features a direct volume visualiza-
tion algorithm for unstructured grids. The unstruc-
tured grid is sliced perpendicular to the viewing di-
rection and the created planes are blended during
rendering, similar to the idea of volume rendering
using 3D texture mapping. The slicing is performed
by defining the slicing plane through the grid, de-
termining the intersected cells and calculating the
intersection points with the plane by linear interpo-
lation of the two vertices at each intersected edge.
Then, the same interpolation is also performed for
the scalar values of the edge’s vertices. During ren-
dering, a transfer function is applied to the values.
In case of on-screen rendering, the transfer function
is adjustable interactively (see figure 2).

Of course, the slicing algorithm can also be
slightly modified to apply to arbitrary surfaces
within the 3D grid for mapping color-coded data. In
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Figure 2: Scalar values can be mapped onto slicing
planes by an interactively adjustable transfer func-
tion.

combination with the isosurface extraction method,
correlation within the data can be found.

The gridlib visualization subsystem features an
isosurface extraction algorithm for unstructured
grids with progressive surface reconstruction [12].
The algorithm is very fast through using an interval
tree [2] to search for the elements intersected by the
isosurface. The algorithm uses the grid handling ca-
pabilities of the gridlib to build a progressive repre-
sentation of the grid. Note that this can also be used
for rendering continuous levels of detail, which is
especially useful for keeping the framerate interac-
tive for local hardware accelerated visualization.

3.2 Rendering

The rendering subsystem is split into two major
parts: An abstract renderer for geometric primitives
and a rasterizer. Currently, there are rasterizer im-
plementations for triangles and lines. There is a
pure software rasterizer and a wrapper for OpenGL,
both have several derived children for special ren-
dering contexts or hardware accelerated toolkits.

The rendering subsystem is fed by the visual-
ization methods with individual triangles or trian-
gulated meshes. The geometric primitive renderer
processes them with standard computer graphics al-
gorithms for culling and clipping in order to reduce
the number of triangles to rasterize. It’s main task

Geo.Prim. Renderer

OpenGL RasterizerSoftware Rasterizer

Rasterizers Toolkits
Special OpenGLSpecial Context

Figure 3: The rendering subsystem derives several
software based rasterizers and hardware accelerated
implementations from a single well defined inter-
face.

is to serialize the triangles into a specific formatted
stream for the rasterizers. This includes computa-
tion of vertex attributes like color (probably from a
transfer function mapping) and texture coordinates
(including loading of texture bitmap). The renderer
also features portal culling in order to reduce the
overdraw rate of the rasterizers. The geometric
primitive renderer is a pure software implementa-
tion and can therefore be used for all rasterizers.

For rendering on the parallel supercomputer, the
software rasterizer is used. It works similar to
OpenGL by using a Z-buffer. Although there is
some CPU-cycle penalty for the overdraw, this tech-
nique allows to implement the scanline code to treat
the Z-component similar to other scanline attributes
like color and texture. This gives longer code se-
quences without branches and therefore better op-
timization possibilities for the compiler. However
the most appealing aspect of the Z-buffer technique
is, that the rasterizer can be kept quite simple to im-
plement. It finally provides a framebuffer and the
Z-buffer to it’s derived children which are left with
implementing the transport of the framebuffer con-
tent on screen or into an image file.

4 Parallelization and Results

Within the gridlib framework, abstraction and en-
capsulation is performed on several levels. Along
with ensuring reentrant implementations, it is the
foundation parallelization and distribution is built
on. For the actual implementation there is a variety
of concepts for running code concurrently, ranging
from operating system specific threading to high-
level middleware. On supercomputer systems, the
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MPI interface has become a quasi-standard. It has
a well defined set of routines for exchanging infor-
mation based upon the message passing paradigm
which is a synchronous rendez-vous concept. This
makes it possible to use the interface for shared and
distributed memory architectures equally. The MPI
library itself is often specifically tailored to the su-
percomputer for optimal performance. The gridlib
uses MPI for transparent parallelization and distri-
bution. Although the gridlib supports Linux on the
PC, IRIX on SGI Onyx and Origin machines, we
concentrate in this paper on the Hitachi SR8000-F1
supercomputer architecture.

IO subsystem

Partition

Framebuffer

Partition Renderer

Renderer

Figure 4: Overview of data flow for rendering.

Figure 4 shows the general data flow to the ren-
dering subsystem: A designated process requests
the grid from the IO subsystem and distributes it
equally in terms of elements to all participating pro-
cesses. Then, a refined partition is computed by all
processes in parallel. Geometry or custom weight-
ing of the elements can be taken into account (ver-
tices 7! grid nodes). Also, the gridlib can create the
dual grid and compute the partition graph on it (ver-
tices 7! cell centroids). After performing the simu-
lation, the partition is reused by the rendering sub-
system to draw only the assigned part into a private
rendering context. Note that this also distributes the
memory requirement. Upon completion, all partial
images are combined into the final framebuffer by a
synchronized method.

Because the sizes of practically relevant datasets
for CFD simulation easily exceed local memory re-
sources, a dataset must be distributed among pro-
cessing entities (PEs). The interconnect between
the PEs has much less bandwidth than local mem-
ory and is therefore a bottleneck. Consequently
this communication cost dominates the total data
exchange time. The gridlib framework processes
the grid geometrically and topologically in order
to build an adjacency graph in parallel. From this
graph, the parallel METIS [7] library computes an
optimal partition which is evaluated by the gridlib
for moving the geometry accordingly.

For running CFD solvers, the partitioning crite-
rion clearly has to minimize the number of partition
boundary elements in order to minimize the com-
munication cost. The rendering subsystem uses the
partition to run the visualization and rasterization in
parallel. This does not provide an equal number of
triangles to render for each PE, because it depends
on the visualization method and parameterization.
However, transferring geometry between the PEs is
too expensive both in terms of time and memory.
Therefore we compute the visualization and render-
ing on the same partition as the simulation to avoid
delays.
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Figure 5: Scaling of the rendering subsystem in
terms of number of processors used.

The following results have been obtained on a Hi-
tachi SR8000-F1 supercomputer [10] using a subset
of 8 nodes of the machine. Each node is equipped
with 9 processors with one being reserved for sys-
tem activity and has 8 GB of local memory. The
distributed resources used in this paper therefore are
64 processors with 64 GB of memory. Although
the processors of one node are sharing the memory,
the parallelization concept of the gridlib performs
a one-to-one mapping of processors to processes.
This has the advantage of being free to place a pro-
cess on any processor in any node to ensure data
locality and coarse load balancing.

We have evaluated the rendering subsystem im-
plementation for the worst case of rendering all the
faces of all elements of the simulation grid. This
incurs considerable overdraw (compare figure 10).
Many visualization algorithms however output un-
related triangles, which is simulated by this ap-
proach. The triangles can be rendered immediately
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or can be stored in a 2D mesh. Note that a typical
visualization as in figure 11 normally has several or-
ders of magnitude less triangles to draw than there
are grid elements. Because we are drawing the tri-
angles produced by the visualization directly from
the simulation grid, the renderer needs no additional
memory apart from the framebuffer and some state
information. All timings have been measured in
wall-clock time, because this is what users are in-
terested in.

Figure 5 demonstrates the scalability of the ren-
dering subsystem. We get almost linear speedup al-
though the communication volume in the Z-buffer
merging stage is growing with the number of pro-
cessors. Note that we minimize the amount of pix-
els to transport by projecting the bounding box of
the triangles to render into screen space and only
selecting the projected rectangle for transport along
with its screen space coordinates. The synchroniza-
tion of the buffer merging stage is ensured by us-
ing blocking MPI calls. Although this seems to
cause unnecessary delays, it is not a problem in
practice, because the overall rendering time in most
cases is typically 1 second. Dynamic redistribution
of the triangles to rasterize incurs communication
overhead that slows down the whole process con-
siderably. The efficiency of our approach is shown
in the left experiment of figure 5, where we com-
pare two renderer instances running on the same
node with two instances running on two separate
nodes. The same was done in the right experi-
ment using four instances on the same node and
on four nodes respectively. The performance dif-
ferences are within the normal measurement jitter
using wall-clock time (see figures 6 and 7). The fig-
ures clearly show that there is no time penalty for
distributing the rasterizers to different nodes: The
overhead of the Z-buffer merging stage is not ap-
parent.

When we compare the performance of the ren-
dering subsystem by running 8 rasterizers concur-
rently, we observe a slight performance loss in the
case of running them on a single node (figure 8 left
column). This is due to suboptimal MPI support
for intra-node operations. In contrast, when we dis-
tribute one rasterizer to each one of the 8 nodes, no
performance penalty is observed (figure 8 right col-
umn). Our profiling on a SGI Onyx (shared memory
architecture) machine does not exhibit this behavior
and thus clearly identifies the distributed memory
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Figure 6: Comparison of assigning 2 renderers to 1
node (left) or 1 renderer to 2 nodes (right).
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Figure 7: Comparison of assigning 4 renderers to 1
node (left) or 1 renderer to 4 nodes (right).

communication to be the bottleneck of the super-
computer. This also justifies our approach not to
compute a separate partition of the grid for render-
ing: The communication time incurred by it easily
exceeds the total time spent for rendering.

As mentioned earlier, we used the worst case of
rendering all faces of all elements individually for
the above measurements. This can be compared to
OpenGL rendering triangle by triangle in immedi-
ate mode. Clearly, a lot of optimizations are possi-
ble if we allow the renderer to work on a larger 2D
triangle mesh, which can be compared to render-
ing OpenGL triangle-strips in retained mode. This
comes at the expense of additional memory require-
ment for storing the 2D mesh and some acceleration
structure. Our rendering subsystem features sev-
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Figure 8: System saturation observed when using
all 8 processors of 1 node (left) compared to 1 ren-
derer on 8 nodes (right).

eral standard optimizations for 2D triangle meshes.
When using them, the software renderer can pro-
duce up to 91.000 smooth-shaded triangles per sec-
ond on a single CPU.

When performing a typical visualization task like
in figure 11, the grid partition automatically breaks
down the number of triangles one process has to
draw to several thousands. Additionally, we have to
draw mostly 2D triangle meshes which enables us
to make efficient use of the acceleration techniques
of the renderer. So we obtain rendering times of
1-2 seconds on average. Compared to total execu-
tion times of the inner simulation-visualization loop
of several minutes up to hours, the time spent for
rendering is negligible. We can therefore easily af-
ford to render the grid on nearly every intermediate
timestep while the simulation is running. The im-
ages created can be streamed back to the user inter-
face and help to judge the simulation process to de-
tect divergence, bad boundary or initial conditions
in which case the simulation can be aborted to save
CPU time.

5 Conclusion

The parallel rendering subsystem of the gridlib is
consistently integrated into the simulation and vi-
sualization framework. It offers one well defined
high-level abstract interface and is split into two
main components for fragment-based operations
and scanline rasterization. The parallelization is
based on the message passing concept and makes

use of the data distribution computed by the parti-
tioning of the simulation grid. There are several im-
plementations of the rasterizer engine, ranging from
hardware accelerated OpenGL-based toolkits to en-
tirely software-based versions. This makes it possi-
ble to use it efficiently on both graphic workstations
and supercomputers.

We have demonstrated the usage of the parallel
rendering subsystem on the Hitachi supercomputer,
where it can render the simulation grid at full res-
olution with little additional memory consumption.
The CPU time spent is negligible for most simula-
tion runs compared to the total job time.

5.1 Future work

The parallel rendering subsystem will be extended
to allow interactive remote rendering on the super-
computer guided by the user through manipulating
a low resolution model on the local workstation.
The low resolution model will be generated on the
supercomputer on-the-fly from the simulation grid
and sent to the workstation using progressive mesh-
ing techniques.

For rendering complex spatial relations and
gaseous media, we are currently examining the po-
tentials of raytracing. This technique will be used
mixed with the fragment-based rasterization and
can solve some typical raytracing problems as men-
tioned in [16].
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Figure 9: The rendering subsystem has several ren-
dering modes for close examination of detail or in-
teractive rendering of general shape. The images
above show a partitioned dataset. Each partition
can be turned on/off independently. Each mode or a
combination of modes can be applied to each par-
tition separately: a) surface b) surface and edges
c) volume elements of adjustable size d) surface of
partition e) element-oriented clipping f) volume el-
ement edges
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Figure 10: Exploration of a simulation grid: The partitioned and distributed dataset is examined to look for
possible meshing errors. Switching off partitions and introducing freely positionable clipping planes allows
to keep rendering interactive as we zoom in from left to right until we reach the desired level of detail where
we can switch to rendering the elements. Once potentially critical detail is found, element quality can be
computed with a variety of methods and visualized on the upper right using a transfer function on the lower
right: As the histogram shows, most of the elements are in good shape (according to the criterion) and will
be colored transparent blue, but there are some bad ones that will be colored red. Note that the distribution
to several processors enables to start from the full model.

b)a)

Figure 11: Two examples of possible direct visualization: On the left is an electrostatic simulation showing
some special scalar value as an isosurface and a color-mapped slice through the unstructured simulation
grid, on the right is the same dataset now with a simulation of heat dissipation. The three spheres are heated
and the resulting scalar field is rendered directly from the unstructured grid using volume rendering.
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