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Abstract

In this paperwepresenta techniquefor transforminga
tetrahedral meshinto a progressiverepresentationbasedon
half edgecollapses.Thisallowstheefficienttransmissionof
themeshfroma remotecomputerwhere thesimulationwas
computedto a visualizationcomputer. During thetransmis-
sion the user can start visualizingwhile the transmission
is still in progress. We showa techniquefor progressively
extracting isosurfacesfrom the progressivemesh.Starting
with thebasemeshanisosurfacefor a specificvalueis com-
putedand will locally be improved where a vertex is in-
sertedto themesh

Keywords: tetrahedra, isosurfaces,progressivemeshes,
grid reduction

1. Intr oduction

One of the most usedmethodsto visualize 3D scalar
fields is the extraction of isosurfaces. An isosurfaceis a
region in the field with a constantscalarvalue,definedas
S
�
λ ����� x ��� 3 	F � x �
� λ � . In thispaperwefocusonscalar

fieldsdecomposedinto tetrahedrawhich form a tetrahedral
grid. In a standardapproachall cellswhich areintersected
by the isosurfacehave to be determined. This processis
calledcell search. For thesecells the isosurfacehasto be
computed,i. e.,a cell triangulationhasto befound.

Forsimulationpurposesthetetrahedralgridscanbecome
very large. This is essentialdueto the requirednumerical
accuracy of thesimulation. Thereforeit is oftennecessary
to useparallelremotecomputersto performthesimulation
while using a graphicsworkstationas visualizationfront-
end. For the visualizationa varietyof strategiesarepossi-
ble. A flexible approachis to transferthe tetrahedralmesh
to theworkstationin a suitableway andto usethis grid for
severalvisualizationmethodslike theisosurfaceextraction.
A main drawbackof this approachis that the meshhasto

betransferredcompletelyto theworkstationbeforetheuser
canstartto visualizethescalarfield.

To overcomethis problem,in this paperwe presentan
approachto transformthe tetrahedralgrid into a progres-
sive representationwhichcanbeusedto extractisosurfaces
or useothervisualizationtechniqueslike slicesor volume
renderingon continuouslevels of detail. We exploit grid
simplification techniquesbasedon the half edgecollapse
operatorandtransformthetetrahedralmeshinto a progres-
sive tetrahedralmesh[17].

To achieveacceptablevisualizationresultsalreadyonthe
coarseapproximationsof thetetrahedralgrid, it is essential
to keeptrack of the error originatingfrom the grid reduc-
tion. Eachhalf edgecollapseaddsanapproximationerror
to themesh.Thiserrorcanbedividedinto differentcompo-
nents.Wedistinguishbetweentwo differenterrortypes,the
geometricandthe field error. By usinga techniquebased
on error quadrics[6], the reductionalgorithmis steeredto
keepbotherrorcomponentsminimal.

Basedon the progressive tetrahedralrepresentationwe
presentan algorithm to extract isosurfacesprogressively
from thetetrahedralmesh.By usingthis technique,visual-
izing thefield datacanbestartedafterthecoarsebasemesh
is transferredto the visualizationworkstation.Thequality
of the isosurfaceimprovescontinuouslyduring the trans-
missionof thegrid. We alsocombinea standardapproach
for fastisosurfaceextraction[2] with ourapproachto enable
afastrecomputationof theisosurfaceaftertheisovaluewas
changedby theuser.

This paperis organizedasfollows. In Section2 we give
a brief overview of existing methodsfor simplifying tetra-
hedralmeshesandextracting isosurfaces. We explain our
meshreductionapproachbasedon half edgecollapsesin
Section3 andpresentour steeringcriteria for the approxi-
mationerror in Section3.3. After explaining the progres-
sive isosurfaceextractionalgorithmin Section4 wediscuss
resultsof our algorithmin Section5 andfinish with a con-
clusion.



2. RelatedWork

In this paperwe mainly dealwith thetopicsof meshre-
duction of tetrahedralgrids, progressive transmissionand
the progressive extractionof isosurfacesfrom the grid. In
this sectionwe discussrelatedapproachesin the field of
meshreductionon 2D and3D meshesandmethodsfor iso-
surfaceextractionon3D grids.

2.1. Mesh reduction

Most of thework in thefield of grid reductionwasdone
on triangularmeshes. Hoppe[10] presentsan algorithm
basedon the edgecollapseoperatorto simplify triangle
meshes.At eachstepthe edgewith the lowestcostis col-
lapsedandtheinformationto restoretheedgecollapseby a
vertex split is stored.By this algorithma progressivemesh
consistingof acoarsebasemeshanda largenumberof ver-
tex splits is computed. This can for examplebe usedfor
progressivetransmissionof themesh.

GarlandandHeckbert[6] show anefficient way to keep
track of the approximationerror of the simplificationpro-
cessby usingerrorquadrics.Eachvertex is associatedwith
an error quadricwhich is computedasthe sumof squared
differencesto asetof planes.Whencollapsingavertex into
anotherone,botherror quadricsaresimply added.There-
fore the algorithmis very fastanddoesnot requiremuch
additionalmemory, only 10 coefficientsper vertex. In [7]
theauthorspresentanextensionof theirmethodfor meshes
with surfacepropertieslikecoloror texturecoordinates.For
suchmeshesHoppe[11] presentsan alternative approach
which leadsto visuallyslightly betterresultsandneedsless
memorythanthemethodin [7].

Grid reductionalgorithmsfor tetrahedralgridsbasedon
the edgecollapseoperatorwerepresentedin [17] and[1].
Here, the requirementsfor an edgecollapseon a tetrahe-
dral mesharedescribed,so that the meshis still topologi-
callycorrectafteranedgecollapseandhasnoelementswith
negativevoluminaandnoself intersections.Thepapersdif-
fer in theway theapproximationerror is computed.While
in [17] a simplemethodis explainedto computethe error,
Cignoniet al. comparedifferentalgorithmsfor computing
theapproximationerror.

2.2. Isosurfaceextraction

We divide the relatedwork in two differentareas,grid
reductionandisosurfaceextraction.Themostpopularalgo-
rithm for isosurfaceextractionis theMarchingCubesalgo-
rithm proposedby LorensenandCline. It worksfor regular
hexahedralgrids,traverseseachcell andchecksif it is inter-
sectedby theisosurface.Thealgorithmworkswith 15 base
casesfor the triangulationof a cell, but introducessome

topologicalinconsistencieson certainconfigurations.One
way to overcometheseproblemsis to split eachhexahedral
cell into anumberof tetrahedraandextracttriangulatediso-
surfaceswithin eachtetrahedroncell [3, 9].

In largemeshesmostof the cellsarenot intersectedby
anisosurfacefor aspecifiedisovalue.Thereforetechniques
were developedto be able to efficiently searchfor cells
which contribute to the surface. The SweepingSimplices
algorithm[16] by ShenandJohnsonusesa minimumanda
maximumsortedlist with links from the min-sortedto the
max-sortedlist anddirty flagsin themax-sortedlist. To fur-
therimprove theperformance,Livnatet al. [13] presented
analgorithmoperatingon the2D min-maxspanspace. In
thespanspaceeachtetrahedronis representedasapointin a
2D domainwhereall tetrahedrawhichareintersectedby the
isosurfacefor a givenvaluelie in a rectangularregion. To
speedup thesearchin thespanspaceCignonietal. [2] pre-
sentedanapproachto useinterval trees. Thisalsoimproves
theworst-caseperformanceof theisosurfacecomputation.

A differentapproachfor meshreductionandprogressive
isosurfaceextractionwaspresentedby GrossoandErtl [8].
In theiralgorithm,amultilevelfinite elementapproximation
of agivenvolumedatasetis computed.A coarsebasemesh
is refinedadaptively until theglobalapproximationerrorof
themeshis lowerthanagiventhreshold.Basedonthismul-
tilevel approximationthey presentanalgorithmto progres-
sively extract isosurfaces.Anotheralgorithmfor theadap-
tivereconstructionof isosurfacesfrom volumedatawaspre-
sentedby WestermannandKobbelt[18]. This methodwas
extendedin [4] to beusedfor web-basedisosurfaceextrac-
tion.

3. Mesh Reduction

Theisosurfaceextractionalgorithmin thispaperis based
on a progressive representationof a tetrahedralmesh � .
Theideais to find acoarsebasemesh� 0 in whichvertices
areinserteduntil theoriginalmesh� n �� is completely
reconstructed.To computesucha coarsebasemesh,a grid
reductiontechniqueis usedwhich iteratively removesver-
ticesfrom the meshandretriangulatesthe hole originated
by thevertex deletion. By doingso,a seriesof tetrahedral
meshes���� n � � n � 1 � � n � 2 ��������� � 0 is computed.

3.1. Half edgecollapse

Severalstrategiesexist to removeavertex fromthemesh.
The mostcommonoperatorfor the simplificationof trian-
gle meshesis the well known edge collapseoperator[10].
It removesonevertex andtwo trianglesby mergingtwo ad-
jacentverticesandthusdefinesthe transitionfrom a mesh� i to � i � 1. A positionfor themergedvertex canbefound
by minimizinganerrorfunctional.



Oneof the advantagesof the edgecollapsein contrast
to othermeshsimplificationtechniquesis thesimplicity to
inversethecoarseningprocess.This is doneby splitting the
vertex into two, andinsertingtwo additionaltriangles.This
operatoris calledvertex split. Both the edgecollapseand
thevertex split areshown in Figure1.

edge collapse

vertex split

�� �� ����
Figure 1. The edge collapse and the inverse
ver tex split operator .

To be ableto restorethe original meshby a numberof
vertex split operations,somedatahasto be storedfor ev-
ery singlevertex split. This is the index of thestartvertex
in mesh � i � 1, the indicesof the two verticesof collaps-
ing triangleswhich areadjacentto the startvertex andthe
position of the start/endvertex. Altogetherthis are three
integersandsix float valuesfor everyvertex split.

A restrictionandsimplification of the edgecollapseis
theso-calledhalf edge collapse. Here,onevertex is moved
into thepositionof theothervertex, seeFig. 2. This opera-
tor hastwo advantages.On theonehand,thecomputation
of thehierarchybecomesmucheasierbecausenooptimiza-
tion is necessaryfor findingthenew vertex positions,onthe
otherhandonly onevertex positionhasto be storedin the
progressiverepresentationof themesh.Only threeintegers
andthreefloatsarestored.Thismakestheprogressivemesh
representationbasedon half edgecollapsesmoreefficient
thana sharedvertex representationof thetrianglemesh.

���� ���� ��� 
vertex split

half edge collapse

Figure 2. The half edge collapse and the in-
verse ver tex split operator .

Up to now theoperatorsshown work ontrianglemeshes.
In thecaseof tetrahedralmeshestheseoperatorsnearlylook
thesame.For thehalf edgecollapseonevertex pi is moved
into thepositionof anadjacentvertex p j alongtheedgebe-

tweenthevertices.This removestheedgeandall n tetrahe-
draaroundthisedge.Wenamethisoperationhec

�
pi ! p j � .

To beableto restorethepositionandthescalarvalueof the
removed vertex after the half edgecollapse,the index of
the removed vertex and the indicesof the verticesaround
the edgehave to be stored. This arefour float valuesand
n " 1 integer valuesfor onevertex andn tetrahedra.This
againneedslessinformationthanthenormalsharedvertex
representation.

pip j

Figure 3. Configuration of 4 tetrahedra around
the edge from p j to pi . These tetrahedra will
be deleted by the half edge collapse .

3.2. The reductionalgorithm

Up to now we have definedthe topologicaloperatorsto
deletea vertex from the mesh. To computethe coarseap-
proximation � 0 of the given mesh � a sequenceof half
edgecollapseshasto bespecified.

The basicmeshsimplificationalgorithmnow works as
follows. A weight function is definedwhich associatesa
weight for eachhalf edgeof the mesh. This has to be
done,becausein generaltheweight∆E

�
hec
�
pi ! p j ��� will

be differentto ∆E
�
hec
�
p j ! pi ��� . Then,all half edgesof

themesharesortedinto a priority queueaccordingto their
weight. Thefirst edgeis takenfrom thequeue.It hasto be
checkedwhetherit is forbiddento collapsethe edge.This
canhave differentreasonswhich werealreadyextensively
discussedin [17]. It is not allowedto collapseanedgewith
a startvertex on theboundaryof themeshif theedgeitself
is not on the boundary. This checkcanbeperformedvery
fast becausethe flags whetherpoints or edgesare on the
boundarycanbeprecomputed.

Theotherclassof testsis moretimeintensive.They have
to beperformedon theconfigurationof thetetrahedraafter



eachcollapse.Thefirst oneis thetestfor flippedor folded
tetrahedra.This canbe doneby checkingthe voluminaof
the tetrahedraaroundthe remainingvertex of the collapse
operation.The volumeof a tetrahedronTabcd is computed
by

VT � 1
6

det
�
b # a � c # a � d # a� (1)

If oneof thevoluminabecomesnegative thecollapseoper-
ationis notallowed.

The secondproblemof this classare self intersections
of the boundaryof the tetrahedralmesh. This test is very
expensive. In our implementationwe try to avoid this test.
This is possiblefor mosttetrahedralmeshesif theboundary
geometryis taken into accountwhencomputingthe edge
costsfor a half edgecollapse.

If all testsarepassedandtheedgeis allowedto becol-
lapsedthe half edgecollapseis performedandits entry in
the priority queueis deleted. By the collapsethe weights
for edgesin theneighborhoodof thedeletededgemayhave
changedandhaveto berecomputed.Afterwardsthepriority
queuehasto beupdated.

This algorithmwill beperformedaslong asthepriority
queueis not emptyandsomeotherconditionsarefulfilled.
Sucha conditioncouldbebasedon the globalapproxima-
tion erroror on thenumberof verticesor tetrahedraalready
deleted.

3.3. Controlling the approximation error

As describedin the lastsectionwe have to computethe
erroraddedto themeshby a half edgecollapse.Our mesh
reductionalgorithmhasto besuitablefor simplifying very
complex mesheswith somemillion tetrahedra.Thereforeit
is necessaryto have an algorithmwith linear memoryand
timeconsumption.

Therearedifferenttypesof errorswhicharisewhencol-
lapsingan edge. The error typeswe considerin our cost
function are the geometricerror ∆Eg, the field error ∆Ef

andtheshapeerrorof thetetrahedra∆Es. Thetotal costof
anedgecollapseis thencomputedasaweightedsumof the
threecomponents:

∆E
�
hec
�
pi ! p j ���$� wg % ∆Eg " wf % ∆Ef " ws % ∆Es

� (2)

The choiceof the weightsin our implementationis up to
theuserfor individually tuning the resultsof the reduction
processfor his needs.

GeometricErr or: Wemeasureandcontrolthegeometric
error with the help of error quadricswhich wereproposed
by GarlandandHeckbert[6]. Theideaof theerrorquadrics
is quite simple. The sum of the squareddistancefrom a

vertex p �'& pxpypz1( T to the planesthatmeetat thatpoint
is

d
�
p �$� ∑

e) planes* p + � eTp � 2 (3)

which canberewrittenas

d
�
p �$� ∑

e) planes* p + � pTe� � eTp �� pT � ∑
e) planes* p + Ke� p� pTQp

wheree �,& a � b � c � d ( T definesa planeax " by " cz " d � 0
wherea2 " b2 " c2 � 1. So the error quadricQ is repre-
sentedasa 4 - 4 symmetricmatrix which requires10 float
valuesto store.

To evaluatethecosts∆Eg of anhalf edgecollapseon the
boundaryof themeshwe haveto compute

∆Eg
�
hec
�
pi ! p j ���$� pT

j
�
Qi " Q j � p j

� (4)

As mentionedearlier, becauseof using the half edgecol-
lapsewe do not needto find an optimal position for the
commonvertex but just to classifythe error introducedby
thecollapse.

Field error: Evenmoreimportantthanthegeometricer-
ror is thefield errorof thescalarfield definedby thetetra-
hedralgrid. If thefield erroris not treatedproperlythenthis
errorwill becomeapparentwhenvisualizingthedataseton
acoarselevel.

Whenremoving a vertex from the meshby a half edge
collapsethefield is only changedin the1-ringof tetrahedra
aroundtheremovedvertex onlevel l . To find anappropriate
error measurefor the field error thereforeonly this region
Ω hasto be taken into account. As shown in [1] we can
usethe integral over the squareddifferencesbetweenthe
scalarvaluesin theactualandin theoriginalmeshoverthat
region:

∆Ef
�
hec
�
pi ! p j ���$� 1	Ω 	/. Ω

	S� p��# Sl � 1 � p� 	 2dp (5)

Evaluatingthis formulaat theverticesof theoriginal mesh
whichlie in Ω leadsto agoodapproximationof thefield er-
ror. But oneproblemis thattheevaluationof thefield error
becomesslower while the grid reductionproceeds.There-
fore we decidedto usea local errorestimationwhich only
comparesthe region Ω beforeandafter the half edgecol-
lapse. Again we approximatethe evaluationby only eval-
uatingthe formulaon theverticesof the finer level, in our
casepi . Sothesimplifiedformulanow is

∆Ef
�
hec
�
pi ! p j ���$� 1	Ω 	 	Sl � pi ��# Sl � 1 � pi � 	 2 (6)



Shapeerror: For someapplicationsnotonly thegeomet-
ric andfield errorof thereducedmeshareessential.Espe-
cially whenusingsimplifiedmeshesfor multilevel methods
for numericalsimulationstheshapeof thetetrahedrais very
important.

Thereareseveralpossibilitiesto computea shapemea-
sureof a single tetrahedron,like the aspectratio. Sucha
shapemeasurehasto be invariantundertranslations,rota-
tionsandscaling.Weneedameasurewith apredefinedpos-
itive valuefor an equilateraltetrahedronandlarger values
for degeneratedtetrahedra.As shown in [5] the condition
numberof thematrix S transforminganequilateraltetrahe-
dronto anarbitrarytetrahedronT canbeusedfor defining
suchashapemeasure.

AW � 1

Figure 4. Transf orming an equilateral to an
arbitrar y tetrahedr on

As shown in Figure4 thematrix S � AW � 1 canbesplit
into two matricesA andW. A transformsa right-angled
referencetetrahedroninto thetetrahedronT, W transforms
thereferencetetrahedroninto anequilateraltetrahedron.W
is constantandcanbecomputedas

W �1023 1 1
2

1
2

0 4 3
2 4 3

6

0 0 4 24 3

5/67 �
To get a shapemeasurefor the tetrahedronelementT

we now have to computethe condition numberκ
�
S�8�9

S
9:9

S� 1 9 with theFrobeniusnormof S definedby9
S
9 �;& tr � STS�<( 12

A tetrahedralshapemeasureis now definedby M
�
T �=�

κ
�
S�># 3. So an equilateraltetrahedronhasa value of 1

andflat tetrahedrahaveavaluesof infinity in thelimit case.
To measurethe shapeerror ∆Es of the half edgecollapse
hec
�
pi ! p j � we computethe averageof the shapemea-

suresof all n trianglesaroundthevertex p j , i. e.,

∆Es � 1
n

n

∑
k ? 1

M
�
Tk �

4. Progressive Isosurfaces

Numericalsimulationsoftencannotbecomputedon the
local PCbecauseof the speedandthe memoryneededfor
thecomputation.Thereforethesimulationshaveto becom-
putedon largecomputerswhich mayonly beconnectedby
slow dataconnectionsto the local visualizationcomputer.
By transforminga tetrahedralgrid into a progressiverepre-
sentationasshown in the lastsection,it is possibleto start
renderingthe grid after thebasemeshis completelytrans-
mitted. This basemeshis normallyvery small,only about
1% of theoriginal grid. On this coarsegrid it is alsopossi-
ble to startvisualizingthedataconnectedwith thegrid. In
this sectionwe will show how isosurfacescanbeextracted
progressively from thetetrahedronmesh.

4.1. Extracting isosurfacesfr omtetrahedral meshes

The extraction of isosurfacesfrom tetrahedralscalar
fieldsis easierthanfrom regulargrids.For regulargridsthe
standardapproachfor computingisosurfacesis themarch-
ing cubesalgorithm[14]. Becauseof theeightcornerver-
ticesof anhexahedronwe get256possibilitiesfor thever-
ticesto havegreateror lesservaluesthantheisovalue.Dis-
regardingthesymmetriccases,we endup with 16 different
possibilitieshow theisosurfacecanintersectahexahedron.

In thecaseof tetrahedrathereonly 16 differentsettings
for the cornerverticesandwe endup with threedifferent
cases.In thefirst case,atetrahedronisnotintersectedby the
isosurfaceandnothinghasto bedone.In thenext casethree
edgesof thetetrahedronarecut by theisosurfacewhich re-
sultsin onetriangle.In thelastcasefour edgesof thetetra-
hedronareintersectedby theisosurfacewhichwill produce
two trianglesfor the isosurface.Thedifferentcasescanbe
seenin Fig. 5.

+

+

+

+ +

+

+

−

+ +

−

−

Figure 5. The three diff erent cases for a tetra-
hedr on to be inter sected by the isosurface
and the resulting triangles.

To computethepositionof theverticesof theisosurface
welinearly interpolatethescalarvaluebetweenthevertices



v0 �A@ p0
s0 B andv1 �C@ p1

s1 B of theedge,i. e.,

q � s1 # s
s1 # s0

p0 " s # s0

s1 # s0
p1 (7)

In the third case,wherewe find four intersectionsof a
tetrahedron,thetriangulationis notunique.

4.2. Speedingup the isosurfaceextraction

If thebasemeshis alreadyvery large,the initial isosur-
faceextractionbecomesvery slow. Thereforewe have to
implementa techniqueso that it is not necessaryto check
all tetrahedrawhetherthey areintersectedby theisosurface.
Quite a lot of work hasalreadybeendonein this research
area[16, 15, 2].

In a naive implementationeachtetrahedronhas to be
checkedif it is intersectedby the isosurface.This happens
if thesmallestvaluesmin of a cell is lower thantheisovalue
s and the largestvaluesmax is higher. In [13] it is shown
that all elementswith a minimum valuesmin anda maxi-
mumvaluesmaxcanbemappedin theso-calledspanspace,
an � 2 valuespace.Eachtetrahedroncell is assignedto a
point position

�
smin

� smax� in thespanspace.All tetrahedra
whichareintersectedby theisosurfacecannow befoundin
a rectangularareaabove theX � Y line, which is shown in
Figure6.

X

Y
X=Y

s

s

Figure 6. Elements in the Span Space .

Whatis needednow is anefficient strategy to searchfor
all elementssituatedin the areashown. Thereforewe di-
vide the spanspaceinto subdomainsandarrangethemin
an interval tree, asproposedfrom Cignoni et al. [2]. An
interval treeis a binarysearchtreeover interval

�
smin

� smax�
values. The interior nodesareassignedto a split values.

The split valuesin the left subtreeareentirely lessthans,
in the right subtreeentirely greaterthans. Thereare two
lists assignedto every nodewheretetrahedraareinsertedif
smin D s D smax. In thefirst list the tetrahedraaresortedin
ascendingorderfor the minimal valuesmin. In the second
list thesameelementsaresortedin descendingorderfor the
valuesmax.

In [2] it wasshown that thequerycomplexity of the in-
terval tree datastructureis O

�
k " log

�
h��� , wherek is the

sizeof theoutputandh is thenumberof uniqueintervalsin
thetree. This meansthat thequerycomplexity in this data
structuredoesnot dependon thenumbern of tetrahedrain
themesh.

4.3. ProgressiveRefinementof the Isosurface

Many multiresolutionapproachesfor extracting isosur-
faceswork on thebasisof differentlevelsof detail. A fast
isosurfaceextractioncanbeperformedon a coarselevel of
detail. If theuserhasfoundtheappropriateisovalue,afiner
meshis usedto extractthefinal isosurface.In ourapproach
weusethefactthatby thetransformationof themeshinto a
progressiverepresentation,wehavegivencontinuouslevels
of detail. Eachof the vertex splits hasonly a limited sup-
port wherechangesin themeshhave to becomputed.This
meansthatalsotheisosurfacewill changein thatsmallarea
of the mesh.Soonly a few moreoperationsarenecessary
to simultaneouslyimprovetheisosurfacewhile refiningthe
mesh.

Whena vertex is insertedby a vertex split thereareonly
changesin the meshin the 1-ring neighborhoodaround
the verticesof the new edge. We only look at the case
of half edgecollapses.Thereforethe start vertex p0 does
not changeits positionandwe have threedifferenttypesof
tetrahedraT in theneighborhood:E

old �,� T ��� 	 p0 � T F p1 G� T �E
new �,� T ��� 	 p0 � T F p1 � T �E

moved �,� T ��� 	 p0 G� T F p1 � T �
Tetrahedra

E
old aroundthestartvertex donotchangeand

the isosurfacedoesnot needto beupdated.Thenew tetra-
hedra

E
new aroundtheedgehave to be testedwhetherthey

areintersectedby theisosurface.Thethird grouparetetra-
hedra

E
moved which wereconnectedwith thestartvertex p0

beforethe split and are now connectedwith the end ver-
tex p1 of the mesh. In thesetetrahedrathe isosurfacemay
have changedandthereforehasto beupdated.Thesethree
regionsareshown in Figure7 for the2D case.

Dueto thelinear interpolationof theverticesof theiso-
surface,only verticeson the edgeswhich have p1 as one
endvertex have to becomputed.Verticeson otheredgesin



Tmoved
Tnew Told

p0
p1

Figure 7. The three diff erent regions around
an edge inser ted by a ver tex split.

theconfigurationshown do not changetheir position.After
computingthenew vertex positionsall tetrahedraaroundp1

are testedfor intersectionwith the isosurfaceand the iso-
surfaceis updatedlocally. This meanswe recomputethe
trianglesof theisosurfacefor thosetetrahedraanddeleteor
insertnew trianglesof theisosurfacewherenecessary.

If theuserchangesthe isovaluethecompleteisosurface
hasto beextractedagain.To beableto usetheacceleration
describedin thelastsubsectionwehaveto updatetheinter-
val treewheninsertingnew tetrahedrainto themesh.Here
we usethe sameregionsas for the progressive extraction
of the isosurface.Tetrahedrain Tnew arenot in the interval
treeandhave to be inserted. For the tetrahedrain Tmoved

the max/min interval may have changed. In this casethe
interval treehasto beupdatedandthetetrahedrahave to be
movedto thecorrectnodein thetree.An updatefor a tetra-
hedronwill only occurwhenthe max/mininterval shrinks
andsmin becomeslarger thans or smax smallerthans. For
theupdatethetetrahedronis removedfrom theinterval tree
andinsertedagainwith thenew interval bounds.

5. Results

We have implementedthe algorithmsdescribedin this
paperwith thelibrary gridlib[12]. This is aC++ framework
library for themanagementof 3D adaptive hybrid unstruc-
turedgridsfor integratedsimulationandvisualization.The
gridlib is developedat theComputerGraphicsLab,Univer-
sity of Erlangen.Thelibrary runson PC,SGI workstations
and Hitachi supercomputers.The following experiments
havebeenexecutedonaPCwith anIntel PIII 700MHzpro-
cessorand512Mbmemory.

We presentresultsfor several datasets:Elec which is
a simulationof an electricalfield with 26288verticesand
142131tetrahedra;Harmonic representingan analytical
datasetfor one of the sphericalharmonicfunctions with
anexponentiallydecreasingradialdependency with 262144

verticesand1572864tetrahedra;Shuttlewhichis aresultof
a airflow simulationover a spaceshuttle(190584vertices,
1058775tetrahedra).

Firstweappliedthegrid reductionalgorithmto theelec-
trical field dataset,which wasreducedto 1288verticesand
7737tetrahedra.In Figure8 weshow avisualizationof this
datasetwith an isosurfaceanda color-codedslice usinga
post-interpolatorytransferfunction. The quality of the re-
ductioncanbeseenby comparingthecoarselevel with the
full resolutionof thedataset.

In Figure9 weillustratetheprogressiveextractionof iso-
surfacesusing the harmonicdataset. The isosurfacewas
extractedon thecoarsestlevel, correspondingto 5% of the
verticesof the initial dataset.By insertingnew tetrahedra
to themeshthe isosurfaceis updatedlocally andimproves
fast. In the datasetwith 30% of the original vertex there
is nearlyno visible differencecomparedwith the original
dataset.Whenchangingthe isovaluethe surfacehasto be
recomputedon theactuallevel. In Table1 we comparethe
times for the recomputationof the isosurfacefor a speci-
fied isovalueby usingtheinterval treefor optimizationand
withoutusingtheinterval tree.

datasetsize triangles time (int. tree) time
5% 14718 0.238 0.376
10% 21538 0.341 0.659
15% 24590 0.418 0.993
30% 28482 0.466 1.579

Table 1. Isosurface extraction times on diff er-
ent levels of detail (in sec.) for the harmonic
dataset.

In afurtherexperimentweshow thequalityof thereduc-
tion algorithmfor preservingthe outershapeof the tetra-
hedralmesh. In Figure10 we show the boundarytriangle
meshof the shuttle datasetin coarse(1068triangles)and
high (45932triangles)resolution. By usingerror quadrics
for theapproximationof thegeometricerror theresultsare
comparableto [6]. By alsoconsideringtheothererrortypes
for edgecollapseson the boundary, the collapsewith the
smallestgeometricerrorwill not alwaysbeperformedfirst.
Thereforethe quality of the approximationcannotbe as
good as in the original work. In Figure 11 we have ex-
tractedanisosurfacefrom theshuttledatasetatanumberof
resolutionsstartingwith about5% of the original sizeand
going up to about50% of the numberof tetrahedra.Here
againtheprogressiveimprovementof theisosurfacecanbe
noticed.



Figure 8. Visualization of the Elec dataset with an isosurface and a color coded slice , on the left in
the coar sest and on the right in the finest resolution.

Figure 9. Progressive isosurface extraction in the harmonic dataset, from left to right with 5%, 10%,
16% and 30% of the original size of the dataset.



Figure 10. Shuttle: The outer shape of the space shuttle is not much influenced by the reduction
algorithm.

Figure 11. Progressive extraction of an isosurface for the space shuttle .



6. Conclusion

We have presentedan efficient algorithmfor extracting
isosurfacesfrom a tetrahedralgrid which is transmittedin
a progressive representationbasedon half edgecollapses.
With the help of our approachit is possibleto start visu-
alizing a scalarfield meshedwith tetrahedraalreadyafter
a small basemeshis transmitted. The quality of the vi-
sualizationcanbe improved in continuouslevels of detail
by addingnew verticesto the tetrahedralgrid and locally
adaptingthe visualization. In this paperwe concentrated
ontheextractionof isosurfaces,but alsomany othervisual-
izationapproacheslike directvolumerenderingcanbenefit
from theprogressive transmission.Theability to adaptthe
resolutionof themeshalsomakesit possibleto achieve in-
teractive framerateson computersnot equippedwith high
endgraphichardware.

Futurework will concentrateon improving the quality
of the coarseapproximationsof the tetrahedralgrid. This
includesdevelopingmoreaccurateerrormeasuresfor scalar
fieldsandalsofor vectorfieldswhichwerenotaddressedin
thispaper.

Anotherinterestingtaskis theparallelizationof thealgo-
rithm. Thegrid reductionalgorithmis time consumingbe-
causeof thehighcomputationalcostsof theerrorfunctions.
We would like to usetheparallelremotecomputernot only
for thesimulationbut alsofor thegenerationof progressive
mesh.First testson a SGI Onyx with four processorshave
shown that settingup the priority queuehasa speedup of
factorthreecomparedto usingonly oneprocessor.

7. Acknowledgement

We would like to thank Manfred Kaltenbacher(LSE)
for providing the electricalfield dataset,GuntherBrenner
(LSTM) for providing thespaceshuttledatasetandMichael
Schrumpffor implementingthe isosurfaceaccelerational-
gorithms.

References

[1] P. Cignoni, C. Costanza,D.andMontani, C. Rocchini,and
R. Scopignio.Simplificationof tetrahedralmesheswith ac-
curateerror evaluation. In Visualization’99 Proceedings.
IEEE,1999.

[2] P. Cignoni, P. Marino, C. Montani, E. Puppo, and
R. Scopigno.Speedingup isosurfaceextractionusinginter-
val trees.IEEETrabsactionsonVisualizationandComputer
Graphics, 3(2):158–170,1997.

[3] A. Doi andA. Koide. An efficient methodfor triangulating
equi-valuedsurfacesbyusingtetrahedralcells.IEICE Trans.
Commun.Elec.Inf. System., E-74(1):214–224,1991.

[4] K. Engel,R. Westermann,andT. Ertl. Isosurfaceextraction
techniquesfor web-basedvolumevisualization. In Visual-
ization’99 Proceedings, pages139–146.IEEE,1999.

[5] L. A. FreitagandP. M. Knupp. Tetrahedralelementshape
optimizationvia the Jacobiandeterminanteand condition
number. In Proceedingsof the 8th InternationalMeshing
Roundtable, 1999.

[6] M. GarlandandP. Heckbert. Surfacesimplificationusing
quadricerrormetrics. In ACM Comp.Graph.(SIGGRAPH
’97 Proc.), pages209–216,1997.

[7] M. GarlandandP. Heckbert.Simplifying surfaceswith color
andtextureusingquadricerrormetrics.In Visualization’98
Proceedings, pages263–269,1998.

[8] R. Grossoand T. Ertl. Progressive iso-surfaceextraction
from hierarchical3dmeshes.In Comp.Graph.Forum(EU-
ROGRAPHICS’98 Proc.), pages125–135,1998.
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