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Abstract

For the visualization of subtle structures in
vector fields, the line integral convolution
(LIC) method has proven to be of great value.
When trying to display 3D LIC volumes of
flow fields, the possibility of comprehensive
and convenient interactive exploration of the
volume becomes a crucial point, because of
the amount of information present in the vol-
ume. Previous work has shown how to effi-
ciently make use of 3D texture rendering tech-
niques to enable interactivity. Based on this
approach, we present a stream-oriented solu-
tion to animated 3D LIC volumes, integrat-
ing stationary and non-stationary flow simula-
tions. We further show how particle transport
is integrated in order to enhance the spatial
understanding and produce animations that
also show the absolute value and the sign of
velocity in the flow field. Our approach is
flexible enough to support multiple implemen-
tations and makes efficient use of available
hardware. It integrates nicely with other ap-
proaches to enhance the visual quality.
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1 Introduction

The line integral convolution (LIC) approach
for visualizing flows has seen many improve-
ments since its introduction by Cabral and
Leedom [CL93]. Their original algorithm per-

formed the convolution along curved stream
line segments. The improvements introduced
by Stalling and Hege [SH95] made the algo-
rithm faster, independent of resolution and
added more accuracy to it. Since then, an ever
increasing number of applications of LIC for
the visualization of flows has shown its impor-
tance in computational fluid dynamics (CFD)
research.

LIC is capable of visualizing very subtle fea-
tures of the vector field of a flow. However,
most CFD data (measured or simulated) is of
intrinsic 3D nature. Volume LIC shares the
appealing properties of 2D LIC image compu-
tation, but a thorough analysis and interpre-
tation of the vector field requires to be able
to approach interior structures of the data
volume. The task of visualizing the region
of interest with LIC therefore becomes quite
challenging, because in contrast to geometry-
based display of glyphs, the density of infor-
mation hinders the user to ”see through” un-
interesting parts. The main task of 3D LIC
display is therefore to give the user interac-
tivity to explore the volume.

There are several approaches to this task.
One is to generate flat LIC images on sur-
faces in three-dimensional space. The sur-
face can be defined freely in position and
shape, or it can be computed automatically
using boundary conditions. The 2D image
is then simply mapped [For94] onto the sur-
face. The problem of distortion of length in-
troduced by this mapping was solved by com-
puting the LIC directly onto a triangulation



of the surface [TGE97] or by using solid tex-
turing [MKFI97].

A different approach is taken by Rezk-
Salama et al [RSHTE99]. Their system is
based on direct volume rendering technology
like it is common in medical imaging appli-
cations. Because there is hardware support
available for display, the user can interactively
explore the volume. This approach however is
restricted to a static LIC volume.

Another drawback of the original LIC algo-
rithm, not to visualize the absolute value of
velocity, has been addressed in many other
papers, using color coding [BR98, SJM94,
SH95], asymmetric filter kernels [HS98, SH95]
and varying line width [IG98, WG97]| ap-
proaches. In [SK97] the problems arising from
non-stationary flows have been investigated,
too.

After a short discussion of pervious work,
this paper is based on, we continue with a
detailed description of our system in section
2. Section 3 discusses some implementation
specific, but crucial details and presents some
performance numbers, before we conclude in
section 4.

1.1 Previous Work

The contribution this paper makes to the task
of 3D LIC visualization, was inspired by the
work of Rezk-Salama et al [RSHTE99]. They
present two approaches to LIC visualization
using 3D textures for direct volume rendering.

The first one is to use color-tables to inter-
actively assign color and opacity values, the
second approach is clipping of the LIC vol-
ume. The clipping geometries’ can be spec-
ified and interactively manipulated by the
user. An OpenInventor testbed [SDWE98| for
direct volume rendering capable of exploiting
hardware accelerated 3D textures is used as a
platform for the implementation.

The 3D LIC can be automatically animated
with both approaches using color-table an-
imation and clipping against precalculated

! Although they are using only clip-planes, other
geometries are possible too.

geometries obtained by time-surfaces respec-
tively. While color-table animation does not
produce good results in every case, the clip-
ping approach is very flexible and gives con-
vincing results. However, it suffers from de-
graded rendering performance, if the geome-
try gets complex. Although the clipping ap-
proach seems to be capable of handling non-
stationary flows, the article does not specify
it.

2 Implementation

The main idea of the system presented in
this paper is to decouple the LIC computa-
tion and the display of the volume, and to
enable integrated handling of stationary and
non-stationary flows.
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Figure 1: The whole system.

Our approach shares the idea of using vol-
ume rendering to display the 3D LIC with
the work presented by Rezk-Salama et al. In
contrast to them, our system enables the in-
tegrated analysis of any kind of flow by not
restricting the visualization to a single static
volume source. We provide a solution to the
problem of keeping the volumes of each time-
step in memory by using pixel-oriented video
streaming techniques. Additionally, we intro-
duce the smooth integration of 3D LIC and
particle transport visualization without addi-
tional memory or computational costs.

As depicted in figure 1, our system consists
of three major building blocks. The first one



is the actual LIC computation of a flow sim-
ulation vector field. This is done by a small
C++ program wrapping an optimized Fortran
LIC kernel. The kernel supports parallel LIC
computation on shared memory machines us-
ing a static load balancing scheme based on
spatial partitioning of the vector field. Using
an input volume and a vector field, it creates
two output volumes: One, containing the tra-
ditional LIC volume and a second one, that
contains the input volume distorted accord-
ing to the vector field.

The creation of the second volume is folded
directly into the LIC computation within the
kernel. It requires no extra computation time,
because the LIC algorithm is already sam-
pling the motion vectors of the input field.
The warped position of a point in the second
volume is therefore exactly the motion vector
with maximum length at the original position
in the input field. Note that if vector field
and voxel volume have the same resolution,
this reduces to a simple pixel-copy operation.

The user can choose which volume to pro-
cess further. In the normal case, this will be
the computed LIC volume. In addition to the
simulated time-step motion, the blurred LIC
lines help the spatial understanding (see fig-
ure 4 and section 3). On the other hand, using
the second volume offers a simple way of doing
before—after comparisons.

The biggest benefit of creating two volumes
is, that the second volume can be used as in-
put volume for the next time-step, enabling
pixel-transport visualization. The vector field
can be exchanged after each simulation step.
Note that this feature is therefore especially
useful when non-stationary flow fields are to
be simulated: If the user places some non-zero
spots in an input field that is zero elsewhere,
the spots will be transported accordingly.

The second part of our system is a config-
urable stream encoder. It takes the simulated
LIC volumes and slices them in each major
direction. This produces one video stream for
each X, Y and Z. The reason for this is, that it
enables the stream player later to easily switch
to shear-warp rendering of the volume, if 3D

texturing is not available (or not hardware ac-
celerated). The only problem to solve in this
case, is to be able to search the target stream
for the current frame number, if the shear-
warp algorithm needs to switch the slicing di-
rection.
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Figure 2: Multiple volume slices are stored in
one image to optimize codec usage.

In order to take full advantage of the capa-
bilities of the encoder, it is in general not a
good idea to encode every volume slice sepa-
rately. The stream encoder therefore tries to
tile adjacent slices, using a well defined enu-
meration scheme, into a larger image (see fig-
ure 2). The image then gets encoded and is
appended to the stream. The encoder takes
care to tile the slices in such a way, that there
is an equivalent number of images per time-
step of the LIC volume in each of the shear-
warp streams, so it’s easy for the player to pre-
dict the position of the next simulated time-
step within the stream. If the stream player
can use 3D textures, it’s enough to display
only one of the streams.

The third part of the system is the inter-
active stream player. It’s layout is shown
in detail in figure 6. The pipeline design
with ring-buffers between the most CPU con-
suming components enables efficient multi-



threaded asynchronous processing. Addition-
ally, each component can have multiple imple-
mentations which take advantage of available
hardware support or provide a software solu-
tion on other systems.

The main processing steps of the pipeline

are (compare figure 6 from bottom to top):

e Reader: It is responsible for providing
the raw stream data. This can be a sim-
ple file reader (see section 3) or a subsys-
tem for network access. It’s main task is
to ensure the continuous data feed to the
pipeline. This includes quality-of-service
negotiation or caching in the networked
case.

e Stream decoder: This component in-
terprets the byte stream from the reader
by splitting it into content streams. Cur-
rently, there is a stream of image data
and a stream of configuration commands
for the successor components.

e Image decoder: It’s first task is to de-
code the image data. This includes de-
compression and re-assembly of the im-
age that has perhaps been split into mul-
tiple chunks by the streams format def-
inition. The second task is to perform
pixel-oriented image manipulation. This
is mostly used for conversion between
color-spaces.

e Mapper: Here, the packing of multi-
ple volume slices into a larger image is
reverted. Because this component has
knowledge about display properties, this
is the place to decide how to extract the
slices from the image according to the
rendering method (3D textures vs. shear-
warp) to be used. This includes pixel-
oriented operations on the slice textures
to modify opacity, if the stream does not
provide opacity information.

While the reader and the stream decoder
are tightly coupled for optimized stream-
oriented transport, the two decoders and the
mapper are connected by a ring-buffer compo-
nent. This decouples the writing and reading
routines of the connected components and al-
lows input processing at a different granular-

ity than the block size intrinsic to the data.
For example, the stream decoder can choose
to process the stream as soon as it is available
from the reader. This can be useful in case of
memory-mapped file access. Alternatively it
can block until a certain amount of data has
been received and process it in one step in or-
der to avoid frequent context switches when
running on a single-processor machine. Note
that this strategy also helps the image decoder
in case of split-field or interlaced streams, or
when the player is connected via a network.

3 Results

The system described above has been imple-
mented on a SGI O2 workstation. All mea-
surements have been done on a machine with
R10000 195 MHz processor and MVP Vice
TRE video board. The timings and numbers
throughout the remainder of this paper refer
to a 128% 3D LIC simulation with 100 time-
steps.

The user first chooses the vector field and
defines an initial input field configuration. In
figure 4, the choice was to place a block of 10
slices of white noise in the volume, in order to
see how these ”particles” get distributed over
time. Consequently, the LIC kernel was con-
figured to use the second output volume (the
distorted input volume) as input volume for
the following time-step. The first output vol-
ume (the LIC volume) is sent to the stream
encoder, giving some kind of ”LIC transport”
visualization. Then, the LIC computation of
the flow simulation is started on the local ma-
chine. Simulating 100 time-steps takes about
22 minutes at full resolution. Note that this is
in sharp contrast to the work of Rezk-Salama
et al [RSHTE99]. However from the point of
view of a CFD engineer, interactivity in visu-
alization is the key point. Our system can pro-
vide that for visualization methods, for which
is was not available previously without loss of
accuracy.

The calculated LIC volumes get encoded
into Motion-JPEG streams which are written
to disk. The encoding of the images is done



using the hardware codec of the video board.
This produces three shear-warp streams with
a size of &~ 18.5 MByte each, which equals a
good compression ratio of 1 : 10.8 .

Figure 3: Rendering 3D LIC volumes with
more than 10242 voxels: The border marks
the first slice of each stream frame.

After completion of the stream creation, the
user can playback the simulation with the help
of the interactive stream player. It has a very
efficient implementation that makes in every
stage of the processing pipeline (figure 6) use
of hardware acceleration: First, the reader
memory-maps the first stream, so the stream
decoder can easily hand over the pixel sub-
stream to the first ring-buffer. The image de-
coder again uses the hardware codec to de-
compress the MJPEG fields and renders two
of them into one image in the second ring-
buffer. Using a SGI OpenGL extension, the
pixels get at the same time converted from
YCrCh to RGB values. Then, the mapper
takes one image from the ring-buffer and ren-
ders it into texture memory. It can define an
OpenGL color map to modify opacity adap-
tively for each pixel by using the SGI color
map extension. Because the O2 hardware
does not support 3D textures, the volume is

finally rendered on screen using a shear-warp
approach.

The color conversion also enables the map-
ping of additional scalar values onto the LIC
volume. Also note that all the possibilities
of convenient visual access to interior struc-
tures of the LIC volume presented by Rezk-
Salama et al can also be used within our sys-
tem: The image decoder and the mapper are
using color-table mapping which can easily
be extended with the functionality described
in their paper without a framerate penalty.
The clipping approach also integrates nicely
by introducing a geometry-description-stream
to be used for clipping during rendering. This
however will degrade the rendering perfor-
mance dramatically and lead to inacceptable
framerates, like Rezk-Salama et al have ex-
perienced. The color-table-based pixel ma-
nipulation therefore clearly is the more effi-
cient way to optimize the visual quality during
rendering. The clipping approach however is
a very powerful tool during stream creation.
The encoder can use it to remove unwanted
parts of the volume prior to tiling the slices
into one stream image.

Also please note that for the setup de-
scribed above, the stream player draws 101
time-steps of the volume (initial configuration
+ 100 simulated steps). Because of hardware
limitations of the MJPEG codec, a image in
the stream may not exceed 1024 x 1024 pixel.
If the LIC volume can’t be tiled into this
area, multi-pass rendering is used. Figure 3
shows a volume with 128 = 10242 x 2 voxels,
that has been rendered from two consecutive
stream frames. The first slice of each pass
is marked by a border. Because each of the
frames within the stream is stored in inter-
laced mode, the player effectively draws 101
time-steps using 202 stream frames composed
from 404 fields. This automatically breaks
down the block size the codec has to handle
to sizes that allow to put the ring-buffers into
framebuffer memory. On the test machine, we
obtain rates of 9-10 frames per second?.

2Note that this is independent of the complexity of
the LIC volume, compared to clipping [RSHTE99]



Figure 4: Two views of the same animation from different perspectives at the same time-steps.

The switching of the texture drawing se-
quence necessary for the shear-warp render-
ing technique is supported by the stream de-
coder component (compare figure 6): It has
three readers to choose from, each providing
a stream for X, Y or Z major rendering di-
rection. Because the seek time for a particu-
lar frame in this configuration never exceeds
3 msec when doing jumps at random points
in time, the switching of the streams is hardly
noticeable to the user. The fast search time
is possible, because from the playback, the di-
rection in which to start searching is obvious?.
Note that this can be accelerated with mo-
tion prediction: The stream decoder can be
instructed by the mapper to start filling in
frames from the target stream to the pipeline
in advance to compensate the predicted pre-
roll time.

During the implementation it became evi-
dent, that for many configurations, the 1/O
or memory bandwidth was not the limiting
factor. Instead, especially the player is suffer-
ing from context switching overhead. There-
fore we use OpenGL capable SGI pbuffers
for implementing the ring-buffers, which re-
side in offscreen framebuffer memory. This
makes it possible to share them with the ren-
dering context of the screen. However, using

3In the case of input from a file, the field indices
can be cached upon player start[Ben75].
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Figure 5: Framerates of the stream player at
different window sizes. The X-axis refers to a
square N x N window.

the hardware codec generally enforces copy-
ing of the data. Codecs supporting overlap-
ping compression and in-place decompression
like [LZO98] can be an alternative that will be
investigated in future research. Additionally,
the O2 hardware seems to have a rather lim-
ited pixel fillrate. As figure 5 shows, the fram-
erate dramatically drops when resizing the
rendering window (using 2D textured shear-
warp rendering).



4 Conclusion

The system presented in this paper shows a
new approach to interactive visualization of
three dimensional flow simulation both sta-
tionary and non-stationary. By generating a
video stream, which is configurable to the ca-
pabilities of the target machine, the user is
also able to save simulation experiments for
instant redisplay at a later time. The image-
based nature of the video furthermore offers a
large variety of possibilities for postprocessing
during playback and does not preclude further
enhancements of the rendering by other tech-
niques like clipping.

A slight modification of the LIC comput-
ing kernel enables particle transport visualiza-
tion to be integrated smoothly. Especially in
combination with 3D LIC computed on each
time-step of the simulation, the user gets a
convincing impression of the properties of the
flow.

While the current solution is particularly
useful for standard workstations, future re-
search will investigate into implementing the
core routines on a high-end graphics ma-
chine. The dedicated texture memory avail-
able on these machines offers hardware sup-
port for 3D textures. In combination with
hardware color-map manipulations, this will
reduce the overhead for switching graphics
contexts. In conjunction with 3D LIC compu-
tation on multi-processor shared memory ma-
chines attached to the visualization frontend
by streaming-capable middleware, we expect
to get a system response time to parameter
changes that allows interactive visualization
and steering of flow simulations.
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only).



