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Abstract

Rendering, in particular the computation of global illumination,
uses computationally very demanding algorithms. As a conse-
quence many researchers have looked into speeding up the com-
putation by distributing it over a number of computational units.
However, in almost all cases did they completely redesign the rele-
vant algorithms in order to achieve high efficiency for the particular
distributed or parallel environment.

At the same time global illumination algorithms have gotten
more and more sophisticated and complex. Often several basic al-
gorithms are combined in multi-pass arrangements to achieve the
desired lighting effects. As a result, it is becoming increasingly
difficult to analyze and adapt the algorithms for optimal parallel
execution at the lower levels. Furthermore, these bottom-up ap-
proaches destroy the basic design of an algorithm by polluting it
with distribution logic and thus easily make it unmaintainable.

In this paper we present a top-down approach for designing dis-
tributed applications based on their existing object-oriented decom-
position. Distribution logic, in our case based on the CORBAmid-
dleware standard, is introduced transparently to the existing appli-
cation logic. The design approach is demonstrated using several
examples of multi-pass global illumination computation and ray-
tracing. The results show that a good speedup can usually be ob-
tained even with minimal intervention into existing applications.

CR Categories and Subject Descriptors: D.1.3 [Concurrent
Programming]: Distributed programming, Parallel programming;
D.1.5 [Object-oriented Programming]; I.3.3 [Computer Graph-
ics]: Picture/Image generation, Viewing Algorithms; I.3.7 [Three-
Dimensional Graphics and Realism]: Radiosity, Raytracing

Additional Keywords: Distributed Processing, Parallel Pro-
cessing, Object-oriented Design, Design Pattern, Global Illumina-
tion, Lighting Networks
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ful attention has be paid to issues such as load-balancing, commu-
nication patterns, and data and task management. These issues can
easily dominate the core application logic of distributed algorithms.
This is in particular true for systems that allow for the flexible com-
bination of different distributed algorithms at run-time.

The loss of application logic in a sea of complex distribution is-
sues is a severe and growing problem for reasons, such as increased
application complexity, increased maintenance cost, or simply edu-
cational purposes. In particular maintenance and portability to dif-
ferent hardware architectures has always been a major issuewith
distributed applications. Also, for development and debugging pur-
poses, it is often desirable to run the same code in a non-distributed
serial fashion. This is often impossible with code designedfor dis-
tributed applications where distribution logic is deeply embedded
into the code.

Finally, probably the most important reason for keeping distri-
bution issues transparent to the application programmer isthe need
to add distributed computation to an existing application.Here we
need to add new features with as little impact on the existingappli-
cation as possible.

Creating a transparent distribution infrastructure avoids many
options for optimization and thus will very likely offer inferior per-
formance than distribution code that is deeply integrated with the
application. Thus, our work partly relies on the fact, that the in-
creased availability of cheap but high-performance computers al-
lows us to trade non-optimal efficiency for simpler, cleaner, and
more maintainable application code, of course within limits.

The object-oriented design of an application is the main start-
ing point for achieving transparent distribution. The basic idea of
object-orientation, the encapsulation of data and algorithms in units
that communicate via messages, carries over nicely to distributed
systems where objects now live in separate address spaces. All that
needs to be changed, is the way these objects communicate with
each other, so they do not need to be aware of the fact that a peer
object may actually be located on a different computationalunit.

Object-oriented middleware like CORBA [OMG98a] already
provides much of the required distribution infrastructure, such as
location, communication, and network transparency. However,
from a programmers perspective, CORBA is still highly visible
due to CORBA-specific types in interface definitions and the re-
quirements that distributed objects and their proxies derive from
CORBA-specific classes. Furthermore, interfaces that workwell
with colocated objects can result in high communication costs if
these objects get separated across a network. This raises the need
to transparently adapt the interfaces for objects that may be dis-
tributed.

In the remainder of this paper we present several design pat-
terns for hiding the distribution infrastructure in distributed object-
oriented systems. These patterns emerged from our work on
speeding-up an existing large system for rendering and global il-
lumination [SS95] by distributing it across a network of computers.
For educational purposes, we required the distribution infrastruc-
ture to be highly invisible to the normal programmer. For practical
reasons we could not afford to redesign the whole system around
some intrusive distribution framework.



Thus, we concentrated on encapsulating distributed and non-
distributed modules, and on providing interface adaptors that take
care of distribution issues. The result is a system with a highly con-
figurable distribution infrastructure that is mostly invisible to the
programmer and the user, but still achieves good parallel perfor-
mance. Although we concentrate on distributed processing across
a network of computers in this paper, the same design patterns are
also being used for parallel execution of modules within thesame
address space on computers with multiple CPUs (see Section 4).

1.1 Previous Work

There have been a large number of papers on parallelization and
distribution of rendering and lighting simulation algorithms. Good
surveys are available in [RCJ98, CR98, Cro98]. Most of the pa-
pers concentrate on low-level distribution for achieving high perfor-
mance (e.g. using such tools as PVM [GBD+94] or MPI [GLS94]).
One of the few exceptions is the paper by Heirich and Arvo [HA97]
describing an object-oriented approach based on the Actor model.
Although this system provides for location and communication
transparency, the distribution infrastructure is still highly visible to
the programmer.

Several object-oriented frameworks for supporting parallel or
distributed programming have been suggested (e.g. POET [MA] or
EPEE [Jez93]). POET is a C++ toolkit that separates the algorithms
from the details of distributed computing. User code is written as
callbacks that operate on data. This data is distributed transparently
and user code is called on the particular nodes on which the data is
available. Although POET as well as all other frameworks abstracts
from the underlying message passing details, it requires toadapt the
algorithms to the given structure of the framework and is thus not
transparent to the programmer.

Other approaches view local resources only as a part of a
possibly world-wide, distributed system (“computationalgrids”,
“world-wide virtual computer”), for instance Globus [FK97] or Le-
gion [GLFK98]. While these are certainly a vital contribution to
distributed computing, the demands on the code are significant and
by no means transparent to the programmer, which is the main goal
of our efforts.

2 DESIGN PATTERNS FOR TRANSPAR-
ENT DISTRIBUTION

In the following we present an integrated approach to paralleliza-
tion and distribution of application modules. It is based onthe fact,
that object-oriented systems should be and usually are composed of
several quite independent subsystems. In contrast to addressing par-
allelization at the level of individual objects, larger subsystems of
objects usually offer a better suited granularity for distributing com-
putation across computers. These subsystems are often accessed
through the interface of a single object using the “facade” design
pattern [GHJV95].

In an application based on this common design approach,
these few facade classes can easily be mapped to CORBA inter-
faces [OMG97], providing the basis for distributing the applica-
tion. However, this initial step does not solve our problem,as the
CORBA-specific code would be introduced at the heart of our ap-
plication and we do not want the details of distribution to bevisible
to a developer. Ideally developers should be able to concentrate
on their problem instead of being unnecessarily forced to consider
distribution-specific issues, like network latencies, CORBA-types,
request-bundling for optimized transport, marshaling andobject se-
rialization, mapping of class creation requests to factorymethods,
and the handling of communicating threads for asynchronousoper-
ations.
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Figure 1: Wrapping existing implementations promotes codereuse
by enabling traditional classes to communicate with the distributed
system through the services provided by the wrapper. Because these
services emulate the traditional interfaces to the contained class,
and with the help of templates, this requires almost no manual cod-
ing.

We have chosen to build a new distribution interface that com-
pletely hides the CORBA distribution infrastructure from the appli-
cation. This new interface provides the illusion of traditional, non-
distributed classes to the outside, while internally implementing op-
timized distributed object invocations. It is based on asynchronous
communication with a multi-threaded request-callback scheme to
enable a maximum of parallelism. Additionally, the framework
performs load balancing and bundling of requests to avoid network
latencies. These are the key concepts that allow us to optimally
make use CORBA and its current synchronous method invocation
paradigm (the new CORBA Messaging specification [OMG98b]
add asynchronous method invocation, but is only now becoming
available).

For encapsulating existing interfaces, our framework provides
base classes that provide management services for object creation,
communication transport control and synchronization and many
other services (see below). Our wrapper for the subsystems that
contain the rendering and illumination algorithms use and inherit
from these base classes.

For example, our main management class, which controls the
overall execution of the rendering task, must be able to define cer-
tain synchronization points to ensure that all distributedobjects
have the same view on the whole system. This occurs for exam-
ple when waiting for all distributed rendering objects to finish their
setup and scene parsing routines before invoking renderingcom-
mands. Additionally, this management classes provide hostma-
chine information, a scripting engine for configuring the distribu-
tion of objects, resource locking, and access facades for the man-
aged subsystem while hiding the use of CORBA completely. In the
next three subsections, we address the basic patterns used to imple-
ment this approach.

2.1 Wrapping for Distribution

In order to actually reuse the existing object implementations within
a distributed environment, our distribution framework provides
wrappers for entire subsystems. A wrapper actually consists of two
half-wrappers that encapsulate the subsystem as a CORBA client
(calling) and as a server (called). We assume that a subsystem is
represented by at least one abstract C++ facade class, that defines
the interface of the subsystem. We also assume that the subsys-
tem communicates with the outside through interfaces defined by
similar facade classes.

We replicate each of these interfaces in CORBA IDL using struc-
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Figure 2: Specific method calls can be forwarded to the implemen-
tation in a pseudo-polymorphic way, while general functions like
serialization of request packets are inherited from template base
classes which in turn implement the abstract interface declaration
(see also Figure 6).

tures to pack relevant object data that needs to be transferred (the
object by value extension of CORBA has not been available until
very recently). Most often we also define new methods that al-
low for the bundling of multiple requests on the calling side. We
then implement the server side by forwarding the requests tothe
wrapped facade object in a pseudo-polymorphic way [CS98], se-
rializing any bundled messages that arrive, and managing asyn-
chronous calls (see Figure 1).

For the client role of a wrapped subsystem, we need to instanti-
ate C++ classes that derive from a distributed C++ proxy template.
They translate the calls from the old C++ interface to calls,that
use the CORBA object references. This layer is also responsible
for bundling individual calls and using new asynchronous interface
methods for bundled requests within the CORBA interface.

Although this wrapping seems complicated and does require
some small amount manual coding, most of the work can be del-
egated to generalized template abstract base classes (see Figure 2).
When viewed from the outside, the encapsulated subsystem looks
just like a distributed CORBA object using the equivalent CORBA
IDL interface. To the contained object, the wrapper looks exactly
like any other part of the traditional system using the old C++ in-
terfaces.

The biggest benefit of using this kind of wrappers is the possi-
bility of reusing existing code. While this does not take advantage
of parallelization within a subsystem, it enables the distribution and
parallelization of different subsystems. This can be of great value,
in particular when multiple memory-intensive algorithms have to
be separated across multiple machines. The interfaces, provided by
the wrappers, finally allow wrapped traditional objects to transpar-
ently cooperate with other distributed objects as they are introduced
in Section 2.3.

2.2 Replication and Request-Multiplexing

In order for old code to use distributed subsystems, we need an
additional wrapper. Its interface is derived from the old C++ fa-
cade interface, but it translates the messages to corresponding calls
to distributed CORBA objects, e.g. those from Section 2.1. As
mentioned before, this translation has several aspects. For one, it
translates between traditional and CORBA types where object data
needs to be copied into IDL structures. Second, small individual re-
quests may be accumulated and sent across the network in bundles,
thus avoiding network traffic overhead.

In addition, we take the opportunity of the wrapper to perform
multiplexing and re-packeting of requests across a pool of func-
tionally identical CORBA servers. This enables us to distribute
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Figure 3: Multiplexers distribute requests equally to functionally
equivalent objects either distributed across a network (data-parallel
ray-tracers) or running in different threads (colocated lighting ob-
jects). Note that the multiplexers do not contain the computa-
tion classes, rather they supply the requests and manage thetrans-
port of the responses. The embedded request managers use a re-
quest/callback model and a thread pool to achieve asynchronous
communication.

the computational load evenly using load balancing performed by
the wrapper. However, because of the current synchronous nature
of CORBA method calls, multiplexing needs to use the request-
callback scheme [SV96] provided by our base classes.

Load balancing is performed by sending requests to the server
with the lowest load. To this end, the servers maintain FIFOsof re-
quests to balance network latencies. The fill-level of thoseFIFOs is
communicated back to the wrappers piggy-packed on data returned
in the callbacks.

Using this scheme, the multiplexed classes look to the outside
like a single, more powerful instance of the same subsystem.The
benefit of this approach is that by using wrappers and multiplexers,
existing code can fairly easily be wrapped, replicated, andthereby
sped up. While multiplexers fan out requests, the wrappers in Sec-
tion 2.1 automatically combine and concentrate asynchronous re-
quests from multiple clients. Note that both patterns perfectly meet
our goal of distribution transparency and do not alter the application
logic of the remaining system at all.

The following pseudo-code shows how a multiplexer for lighting
computations inherits the interface of the lighting base class and
overloads the computation request method by implementing some
scheduling strategy (see also Figure 6).

IDL:
interface LightOp {

void computeIlluminations(in sequence<Request> req);
};

interface Multiplexer : LightOp {
void addLightOp(in LightOp op);

};

C++:
class Multiplexer : public IDLmultiplexerInterface {
virtual void addLightOp(LightOp op)
{ lightOpList_.push_back(op); }

virtual void computeIlluminations(Request req[]) {
int idx= determineBestServer()
lightOpList_[idx]->computeIlluminations(req);

}
protected:
vector<LightOp> lightOpList_;

}

2.3 Transparent Services

Some subsystems are computational bottlenecks and promiseto of-
fer substantial speed-up when they are completely re-implemented
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Figure 4: Distribution and parallelization services provide support
for implementing advanced computation algorithms.

to take advantage of distribution. Our framework provides distri-
bution and parallelization services within the wrapper classes that
go beyond plain data transportation and interface adaption, such
as thread-pool handling, mutexes, factories for one-to-many and
many-to-one operating threads and their synchronization,runtime
system state and type information.

This pattern is the most powerful form of creating a new com-
putation object for the distributed system. It does howeverrequire
knowledge about the design and behavior of the distributionser-
vices. Because the wrapper classes provide the CORBA interface
to the other traditional subsystems of the framework, a distributed
or parallel implementation of a subsystem can easily accessthem
directly.

A good example is a class that performs distributed lightingcom-
putation using the PhotonMap algorithms [Jen96] (see Figure 4
shows our implementation). We reuse existing code for tracing of
photons from the light sources and for reconstructing illumination
information. Both reused object implementations are wrapped with
the patterns described above. Because the algorithm is aware of its
distributed or parallel nature, it can steer and adapt to thecompu-
tational requirements, e.g. by adding new particle tracer threads on
a multi-processor machine or adding new instances of distributed
objects. This scheme allows the programmer to gradually make se-
lected subsystems aware of the distribution infrastructure without
compromising the remaining system on the way.

The possibility of reusing existing classes simplifies the creation
of new distributed subsystems in a straightforward building-block
manner. However, a drawback of this approach is the dedication to
distributed computing, making the new subsystem more difficult to
use when running the application in a serial, single-threaded fash-
ion.

2.4 Discussion

The patterns introduced above offer several benefits:� New developments within the traditional framework are im-
mediately distributable through the wrapper pattern, which
offers speedup through replication and multiplexing.� There is no need for developers of algorithms to bother with
distribution and parallelization issues because the distribu-
tion framework does not alter or interfere with the application
logic.� The distribution and parallelization services offered by the
framework provide the developer of advanced computation
classes with basic functionality that is guaranteed to conform
to the overall design.

Multi-
Lighting Gradients

CombineIrradiance

Direct

Multiplexer

Map
Photon

Combine

Figure 5: Logical data flow within an example distributed light-
ing network performing direct, indirect, and caustic illumination
through different LightOps, some of which are replicated and use a
multiplexer for speed-up.� The learning effort for beginners can be reduced dramatically

by a transparent distribution infrastructure — in particular if
compared to other distribution frameworks and the large num-
ber of new software concepts introduced by them.� Our distribution framework transparently supports modular-
ization and helps to structure the framework into toolkits with
well defined interfaces. This can help to reduce the overall
programming effort, and promotes a better understanding of
the big picture.

For each of the above pattern, there is a typical case of applica-
tion. Like a modular object-oriented program can be viewed at var-
ious levels of granularity, the patterns support this building-block
design strategy. Because the distribution infrastructureuses con-
sistent interfaces, the patterns can be combined with each other or
be applied to traditional class implementations by a configuration
script. Especially for research and development purposes,this of-
fers a tremendous flexibility. Note, that the multiplexer can be used
to easily handle a new parallel implementation of a computation
class, which in turn can be constructed using wrappers, other dis-
tributed classes, or multiplexers.

3 IMPLEMENTATION

The Vision rendering architecture [SS95] is an object-oriented sys-
tem for physically-based realistic image synthesis. The Lighting
Network [SSH+98, SSS98] technology within the Vision frame-
work provides an object-oriented way of dealing with functional
decomposition for lighting calculations. It implements the light-
ing subsystem for Vision by decomposing the global illumination
computations into a set of lighting operators that each perform a
partial lighting simulation. Conceptually, these “LightOps” take
a representation of the light distribution in the environment as in-
put and generate a new representation as output. By connecting
these LightOps in the right way, the lighting simulation canbe con-
figured flexibly by simulating any light-paths in a multi-pass fash-
ion [CRMT91].

The Lighting Network acts as a data flow network much in the
spirit of AVS [UFK+89] or similar systems. Figure 5 shows a
example of a very simple distributed Lighting Network. It uses
two basic LightOps to perform direct lighting, adds their individ-
ual contributions, and then performs indirect lighting computa-
tions. The result is the sum of the direct and the indirect illumi-
nation (also see Figure 8). Direct illumination from light sources
is obtained through ray-tracing, the PhotonMap algorithm [Jen96]
computes caustic light paths, and indirect illumination iscomputed
with the irradiance gradients algorithm [WH92]. The whole light-
ing network is managed by a special object called MultiLighting
that implements the lighting subsystem interface towards other Vi-



C++
Implementations

CORBA
IDL
Interfaces

Skeleton
MultiLighting

Skeleton

Skeleton
LightingComputer

LightOp

LightingComputerBase

LightOpBase

DirectLightOp

DirectLightOp
Skeleton

MultiLighting

Figure 6: Multiple layers of abstract interface declarations are com-
plemented by C++ definitions, to give consistent interfacesto all
components of the lighting subsystem.

sion subsystems and behaving according to the facade designpat-
tern [GHJV95].

The Renderer subsystem of the Vision framework encapsulates
various screen sampling techniques. It computes intersections with
visible objects of the scene and queries the lighting subsystem for
the incident illumination at that point. This illustrates the clear
separation of independent computation within the Vision rendering
framework.

We have applied the presented distribution framework to the
Rendering and Lighting Network subsystem in Vision in that we
allow individual Renderer and LightOp objects to be distributed
across a network or to be run in parallel through the use of threads.
Figure 6 shows the inheritance relations between the interfaces of
the LightOps and the MultiLighting facade. The asynchronous
communication patterns and services are implemented within the
C++ base classes. Note that for wrapping traditional code, the C++
class on the lower left is a pseudo-polymorphic wrapper template1,
which requires no manual coding.

Figure 7 shows a running distributed Vision system. Note that
hosts 1 and 2 contain multiple concurrent LightOps within a light-
ing network. They should therefore have multiple processors to
enable functional parallelism.

The basic operating system functions are accessed via the
portable operating system adaption layer interface of the ACE li-
brary [Sch94]. The communication and remote object creation
is done using the CORBA implementation VisiBroker of Inprise
Corp. [VG98]. To facilitate further development and maintenance,
the design of the base classes follows the guidelines of several de-
sign patterns [GHJV95, CS98, LS96, SHP97, McK95].

1The external polymophism pattern [CS98] allows treating non-
polymorphic classes as if they have the proper inheritance relationship, by
providing all classes with a method that simply delegates the calls to a suf-
ficiently global template signature adapter (that’s why it’s called external)
who in turn calls the method that performs the task.

4 RESULTS

This section demonstrates the flexibility of the presented distribu-
tion and parallelization framework as applied to the Visionrender-
ing system. Several distributed LightOps have been implemented
using the design patterns from Section 2 and we discuss some
of their typical configurations. In order to reuse the traditional
LightOp implementations efficiently, several multiplexerclasses
are available along with different scheduling strategies.This al-
lows building distributed lighting networks, that functionally dis-
tribute lighting calculations. The configuration of the distributed
objects is usually specified in a TCL configuration file using the
existing scripting engine of the traditional Vision system, avoiding
the introduction of a second tier of abstraction for configuring the
distributed system (compare [Phi99]).

4.1 Efficiency of Asynchronous Communication

In the first example, we show the benefits of the asynchronous com-
munication pattern used throughout the CORBA implementation of
the base classes at the heart of the distribution infrastructure. Ta-
ble 1 compares the packeted data transfer within a small lighting
network using asynchronous requests with an equivalent network
using the original interface with fine granularity. Both cases use
wrapped traditional LightOps and the same host configuration:

SGI Onyx Onyx O2
# processors 4 2 1
R10k @ MHz 196 195 195
Renderer �
Lighting Irr. Grad. Direct Combine

The main reason for the speedup of33% is the low number of
210 CORBA method calls to transfer requests over the100 MBit/s
network in the case of asynchronous communication, compared to
128,070 synchronous invocations in the second case. Both net-
works transfer identical 22.7 MB of request data through CORBA
marshaling. It is the synchronous protocol of CORBA that blocks
the client until the server has completed the method call which is re-
sponsible for the poor performance in the second case. This shows
clearly the important fact, that latency can be almost entirely hidden
using the asynchronous protocol provided by our distribution base
classes.

4.2 Distributed Rendering

To optimize rendering times in the case of calculating previews or
testing new computation class implementations, we pick up the ex-
ample from Section 2.2 (see Figure 3). The following configuration
of a distributed Vision system shows the best achievable speedup
we have found using our framework. It uses 4 hosts with a total
of 8 processors. There are 8 ray-tracers to work in data-parallel
mode and 6 lighting modules. Each group is controlled by a multi-
plexer. The distribution framework ensures that all communication
between the two multiplexers is done asynchronously.

SGI Onyx Onyx O2 O2
# processors 4 2 1 1
R10k @ MHz 196 195 195 195
Renderer 4 2 1 1
Lighting 4 2 - -

The lighting hosts execute a traditional implementation ofa Irra-
diance Gradients [WH92] LightOp, which is wrapped for distribu-
tion. Additionally, the wrappers on the multiprocessing machines
also include a multiplexer that executes the incoming requests in
parallel using a thread pool. Because there are multiple threads per
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CPU, the multiplexer synchronizes them in order not to overload
the machine. Configuring this system, required just to name the
hosts and the Lightop with it’s parameters in a configurationfile.
The TCL scripts for system setup take care of distributing the ob-
jects using the Net- and HostManager of Figure 7. This distributed
system is compared to the traditional Vision system with a single
thread of control, running on the fastest machine in a singleaddress
space and calculating lighting with the very same LightOp imple-
mentation.

As Table 2 shows, the speedup obtained is near the theoretical
maximum of 12.5%. The overhead of� 90 seconds consists of
30 seconds session setup, 5 seconds of additional parsing onthe
CORBA startup client and another 5 seconds delay for allowing
the hosts to clean up the CORBA objects before the main CORBA
startup client shuts down all Vision instances. After subtracting this
overhead, we obtain a penalty of� 13% during the rendering phase
for the distributed system. We believe this is a very good result,
given such a general and unintrusive distribution infrastructure.

4.3 Distributing Complex Lighting Computations

The functional decomposition of a lighting network offers the
biggest potential for distribution and parallelization, at the risk of
high communication costs. As shown in Section 4.1, the asyn-
chronous request-callback communication paradigm is ableto pro-
vide a partial solution for that problem. In the following example
we make heavy use of the patterns from Sections 2.3 and 2.1. This
configuration uses 3 hosts with a total of 7 processors:

SGI # proc. R10k @ MHz Renderer Lighting
Onyx 196 4 Photon Map,

Direct, Combine
Onyx 195 2 � Photon Map,

Irrad. Grad.
Octane 175 1 � Photon Map

In this setup, the reconstruction method of the Photon Map
LightOp takes much more time to process a request, than any of
the other LightOps in the lighting network. Consequently, amulti-
plexer is used to distribute this LightOp onto 3 hosts. In contrast,

the three other LightOps are executed on multi-processor machines,
because their reconstruction method is fast and the communication
between them can be optimized, if the CORBA implementation
supports object collocation. In order to drive this complexlight-
ing subsystem, two hosts execute rendering objects controlled by a
multiplexer in a data-parallel way.

As one can see from Table 3, the speedup obtained by this setup
is not as good as in the first example. But even the advantage of
the non-distributed version of running in a single address space,
does not outweigh the communication overhead of the distributed
system. Our profiling shows that the performance differenceto the
theoretical maximum of 14.3% is mainly due to process idle times.
This occurs for example, if the calculation of one upstream LightOp
is sufficiently delayed. Since the underlying Lighting Network is
entirely pull-driven, the pipeline is blocked. We try to cope with
that problem to some extent by allowing the asynchronous interface
to drive three parallel streams at a time. Additionally, theresource
handling within the base classes allows running the rendering com-
putation concurrently with a lighting computation, resulting in a
kind of interleaving CPU-usage scheme, if the lighting pipeline on
the host is stall.

This example shows that there are cases where the full trans-
parency of the distribution infrastructure cannot hide inherent lim-
itations due to coarse grained communication patterns of existing
subsystems. Note however, that this behavior is mostly a problem
of the non-distribution aware algorithms of the lighting network
and not so much a general drawback of the distribution frame-
work. However, even with the very limited success, we still get
some speed-up without any change to the application logic.

Apart form that, one has also to take into account, that whilea
traditional system performs quite well in this case in termsof exe-
cution speed, it is severely limited by the host’s memory resources.
Especially the PhotonMap LightOp needs to store many photons
that have been shot into the scene when working with large scene
descriptions. The distributed PhotonMap LightOps in this exam-
ple have the memory of three hosts to their disposition. Further-
more, the initial shooting of particles is done in parallel,reducing
the Lighting setup time needed to one seventh (there are 7 proces-
sors on the three hosts), which is of great value when simulating
high quality caustics.
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Render Frame 1,922.06 2,916.95
Total 1,977.36 2,974.92

66 % 100 %

Table 1: Packeted asynchronous data transfer within a lighting network compared to LightOps using CORBA’s synchronousrequest invoca-
tion.

wallclock distributed traditional
seconds for System Vision
Session Setup

host 3

host 1

Ray-Tracer

host 1

host 0

host 0

MUX 2

Ray-Tracerhost 2

MUX 1

Ray-Tracer

Ray-Tracer Lighting

Gradients
Irradiance

Lighting

Gradients
Irradiance

31.91

Gradients
Irradiance

Lighting

host 0

Ray-Tracer

-
Parsing Scene 5.61 -
Lighting Setup 0.14 -
Renderer Setup 0.36 -
Render Frame 317.03 2,359.20
Total 387.41 2,380.15

16 % 100 %

Table 2: A distributed system using two multiplexers, controlling the data-parallel renderers and the lighting objects on the left side, are
compared to the traditional single-threaded system.

Although there certainly is a price to pay for the flexibilityof our
distribution strategy, we obtain high degrees of freedom inconfig-
uring the distributed system and adapting it to the challenges of a
specific lighting network.

5 CONCLUSIONS

We presented a general approach on providing a transparent infras-
tructure for distributing object-oriented systems and used this in-
frastructure for the distribution and parallelization of rendering and
lighting computations. While we created several design patterns to
hide CORBA and the distribution infrastructure from the average
system programmer, our system provides distribution services to
the advanced application programmer and still offers access to all
basic distribution classes for sophisticated tuning if necessary.

The use of the CORBA middleware allowed us to abstract from
much of the underlying communication infrastructure. Contrary to
popular believe, the runtime overhead of using CORBA has been
minimal. However, the synchronous nature of CORBA messages
was a major problem that we had to work around using a non-trivial
request-callback scheme based on multi-threading. Here, the addi-
tion of asynchronous messaging to CORBA should help tremen-
dously.

The implementation of distribution functionality within afew
base classes makes distribution issues totally transparent to an ap-
plication programmer. We demonstrated the approach with exam-
ples for the Vision rendering framework, to which it provides trans-
parent data-parallelism and distribution of the existing object struc-
ture. Developers of new computation classes are free to use the
distribution infrastructure to add distribution aware modules or to
wrap existing algorithms and distribute them across a network of
computers.

The distribution infrastructure has proven to be practicaland sta-
ble. It offers well-defined interfaces without imposing anylimita-
tions on the remaining parts of the Vision system. Distributed light-
ing networks simply can be constructed and configured by scripts

that specify the location and parameterization of specific modules
in a network. Figure 8 gives an impression, of how the flexible
structure allows the configuration of the whole distributedsystem
for different purposes, ranging from speeding up preview render-
ings to experimenting with complex lighting networks consisting
of many different distributed lighting simulation algorithms.

Future work on the distribution infrastructure will concentrate
on recovering some of the efficiency that we lost in the process. In
particular, it would be useful if the system would take care of the
distribution of modules across a network autometically andperform
better load-balancing. However, due to the dynamic nature of our
application, this requires some knowledge about the computational
characteristics of the different modules. Making this available at
the wrapping level or during run-time would allow us to statically
allocate and maybe dynamically move modules across a network.
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Figure 8: Data flow and intermediate results computed by a distributed lighting network performing direct, indirect, and caustic illumination
through different LightOps.


