Transparent Distributed Processing For Rendering

Peter Kipfet

Computer Graphics Group
University of Erlangen

Abstract

Rendering, in particular the computation of global illution,
uses computationally very demanding algorithms.

Philipp Slusallek

Computer Graphics Group
Stanford University

ful attention has be paid to issues such as load-balancimgmei-
nication patterns, and data and task management. Thess
easily dominate the core application logic of distributkpbeathms.

As a conse Thisis in particular true for systems that allow for the flégicom-

guence many researchers have looked into speeding up the combination of different distributed algorithms at run-time.

putation by distributing it over a number of computationaits.
However, in almost all cases did they completely redesigméte-
vant algorithms in order to achieve high efficiency for thetipalar
distributed or parallel environment.

At the same time global illumination algorithms have gotten
more and more sophisticated and complex. Often severat bhsi
gorithms are combined in multi-pass arrangements to aehtey
desired lighting effects. As a result, it is becoming insiegly
difficult to analyze and adapt the algorithms for optimalgbiet
execution at the lower levels. Furthermore, these bottpnajo+
proaches destroy the basic design of an algorithm by poguiti
with distribution logic and thus easily make it unmaintditea

In this paper we present a top-down approach for designisg di
tributed applications based on their existing objectsigd decom-
position. Distribution logic, in our case based on the CORBIA-
dleware standard, is introduced transparently to theiegistppli-
cation logic. The design approach is demonstrated usingralev
examples of multi-pass global illumination computatiord any-
tracing. The results show that a good speedup can usuallp-be o
tained even with minimal intervention into existing applions.

CR Categories and Subject Descriptors: D.1.3 [Concurrent
Programming]: Distributed programming, Parallel prognang;
D.1.5 [Object-oriented Programming]; 1.3.3 [Computer @ra
ics]: Picture/lmage generation, Viewing Algorithms; 7.3Three-
Dimensional Graphics and Realism]: Radiosity, Raytracing

Additional Keywords: Distributed Processing, Parallel Pro-
cessing, Object-oriented Design, Design Pattern, Gldhahina-
tion, Lighting Networks

1 INTRODUCTION

Usually, distributed algorithms differ considerably fraheir non-
distributed versions. In order to achieve optimal perfarog care-
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The loss of application logic in a sea of complex distribotis-
sues is a severe and growing problem for reasons, such aagsct
application complexity, increased maintenance cost,oplyi edu-
cational purposes. In particular maintenance and poittakdl dif-
ferent hardware architectures has always been a major vgisie
distributed applications. Also, for development and defiug pur-
poses, it is often desirable to run the same code in a norikditd
serial fashion. This is often impossible with code desigivediis-
tributed applications where distribution logic is deepipbedded
into the code.

Finally, probably the most important reason for keepindridis
bution issues transparent to the application programntéeiseed
to add distributed computation to an existing applicatidere we
need to add new features with as little impact on the exigjgi-
cation as possible.

Creating a transparent distribution infrastructure asaichny
options for optimization and thus will very likely offer iefior per-
formance than distribution code that is deeply integratéd the
application. Thus, our work partly relies on the fact, tha tn-
creased availability of cheap but high-performance coemgual-
lows us to trade non-optimal efficiency for simpler, clearsrd
more maintainable application code, of course within lanit

The object-oriented design of an application is the mairnt-sta
ing point for achieving transparent distribution. The badea of
object-orientation, the encapsulation of data and allgmstin units
that communicate via messages, carries over nicely talaised
systems where objects now live in separate address spatézatA
needs to be changed, is the way these objects communicdte wit
each other, so they do not need to be aware of the fact thatra pee
object may actually be located on a different computatiométl

Object-oriented middleware like CORBA [OMG98a] already
provides much of the required distribution infrastructusach as
location, communication, and network transparency. Hewev
from a programmers perspective, CORBA is still highly vieib
due to CORBA-specific types in interface definitions and the r
quirements that distributed objects and their proxiesvdeftiom
CORBA-specific classes. Furthermore, interfaces that waek
with colocated objects can result in high communicationtsifs
these objects get separated across a network. This rasesdia
to transparently adapt the interfaces for objects that neagib-
tributed.

In the remainder of this paper we present several design pat-
terns for hiding the distribution infrastructure in disited object-
oriented systems. These patterns emerged from our work on
speeding-up an existing large system for rendering andaglibb
lumination [SS95] by distributing it across a network of qarters.
For educational purposes, we required the distributioragtfuc-
ture to be highly invisible to the normal programmer. Forctical
reasons we could not afford to redesign the whole systenmdrou
some intrusive distribution framework.



Thus, we concentrated on encapsulating distributed and non
distributed modules, and on providing interface adaptoas take
care of distribution issues. The result is a system with hltigon-
figurable distribution infrastructure that is mostly irbie to the
programmer and the user, but still achieves good paralidbpe
mance. Although we concentrate on distributed processingsa
a network of computers in this paper, the same design pattem
also being used for parallel execution of modules withingame
address space on computers with multiple CPUs (see Segtion 4

1.1 Previous Work

There have been a large number of papers on parallelizatidn a
distribution of rendering and lighting simulation algbrits. Good
surveys are available in [RCJ98, CR98, Cro98]. Most of the pa
pers concentrate on low-level distribution for achievinghtperfor-
mance (e.g. using such tools as PVM [GB®%] or MPI [GLS94]).
One of the few exceptions is the paper by Heirich and Arvo [AA9
describing an object-oriented approach based on the Aatolem
Although this system provides for location and communarati
transparency, the distribution infrastructure is stifittly visible to
the programmer.

Several object-oriented frameworks for supporting paratr
distributed programming have been suggested (e.g. POET V1A
EPEE [Jez93]). POET is a C++ toolkit that separates the ithgos
from the details of distributed computing. User code is teritas
callbacks that operate on data. This data is distributedparently
and user code is called on the particular nodes on which tizeisla
available. Although POET as well as all other frameworkgralots
from the underlying message passing details, it requiradapt the
algorithms to the given structure of the framework and isthat
transparent to the programmer.

serializer packer |
. back traditional front
s end implementation end
generic :
access proxy object| :
template :

Figure 1: Wrapping existing implementations promotes cedse
by enabling traditional classes to communicate with th&itisted
system through the services provided by the wrapper. Bedhase
services emulate the traditional interfaces to the coathiclass,
and with the help of templates, this requires almost no maug

ing.

We have chosen to build a new distribution interface that-com
pletely hides the CORBA distribution infrastructure fronetappli-
cation. This new interface provides the illusion of traafiél, non-
distributed classes to the outside, while internally immating op-
timized distributed object invocations. It is based on asyanous
communication with a multi-threaded request-callbackesoh to
enable a maximum of parallelism. Additionally, the framekvo
performs load balancing and bundling of requests to avaidar
latencies. These are the key concepts that allow us to dptima
make use CORBA and its current synchronous method invatatio

Other approaches view local resources only as a part of aparadigm (the new CORBA Messaging specification [OMG98b]

possibly world-wide, distributed system (“computatiorlds”,
“world-wide virtual computer”), for instance Globus [FKRar Le-
gion [GLFK98]. While these are certainly a vital contritartito
distributed computing, the demands on the code are sigmifarad
by no means transparent to the programmer, which is the noain g
of our efforts.

2 DESIGN PATTERNS FOR TRANSPAR-
ENT DISTRIBUTION

In the following we present an integrated approach to pelizdi-
tion and distribution of application modules. It is basedlmfact,
that object-oriented systems should be and usually are esadof
several quite independent subsystems. In contrast tossidgepar-
allelization at the level of individual objects, larger sybtems of
objects usually offer a better suited granularity for dlstting com-
putation across computers. These subsystems are oftessadce
through the interface of a single object using the “facadesigh
pattern [GHJV95].

In an application based on this common design approach,

add asynchronous method invocation, but is only now beocgmin
available).

For encapsulating existing interfaces, our framework oles
base classes that provide management services for obgatiarr,
communication transport control and synchronization arahyn
other services (see below). Our wrapper for the subsysthats t
contain the rendering and illumination algorithms use arfeiit
from these base classes.

For example, our main management class, which controls the
overall execution of the rendering task, must be able to defan-
tain synchronization points to ensure that all distributdgects
have the same view on the whole system. This occurs for exam-
ple when waiting for all distributed rendering objects tadimtheir
setup and scene parsing routines before invoking rendeony
mands. Additionally, this management classes provide imast
chine information, a scripting engine for configuring thetdbu-
tion of objects, resource locking, and access facades éomtin-
aged subsystem while hiding the use of CORBA completelyhén t
next three subsections, we address the basic patternsoisaplé-
ment this approach.

these few facade classes can easily be mapped to CORBA inter- 1 Wrapping for Distribution

faces [OMG97], providing the basis for distributing the kg
tion. However, this initial step does not solve our proble® the
CORBA-specific code would be introduced at the heart of our ap
plication and we do not want the details of distribution to/stble
to a developer. Ideally developers should be able to coratent
on their problem instead of being unnecessarily forced tsicter
distribution-specific issues, like network latencies, B2Rypes,
request-bundling for optimized transport, marshaling @lojdct se-
rialization, mapping of class creation requests to factoethods,
and the handling of communicating threads for asynchroopes-
ations.

In order to actually reuse the existing object implemeatetiwithin
a distributed environment, our distribution framework \pdes
wrappers for entire subsystems. A wrapper actually canefstivo
half-wrappers that encapsulate the subsystem as a CORB# cli
(calling) and as a server (called). We assume that a sulbsyste
represented by at least one abstract C++ facade class,effirae s
the interface of the subsystem. We also assume that the subsy
tem communicates with the outside through interfaces defioye
similar facade classes.

We replicate each of these interfaces in CORBA IDL usingestru
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Figure 2: Specific method calls can be forwarded to the implem
tation in a pseudo-polymorphic way, while general functidike
serialization of request packets are inherited from tetepbmse
classes which in turn implement the abstract interfaceadatibn
(see also Figure 6).
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tures to pack relevant object data that needs to be traadféitie
object by value extension of CORBA has not been availablg unt
very recently). Most often we also define new methods that al-
low for the bundling of multiple requests on the calling sidkle
then implement the server side by forwarding the requestheo
wrapped facade object in a pseudo-polymorphic way [CS%8], s
rializing any bundled messages that arrive, and managiyg- as
chronous calls (see Figure 1).

For the client role of a wrapped subsystem, we need to iristant
ate C++ classes that derive from a distributed C++ proxy tatap
They translate the calls from the old C++ interface to cahsit
use the CORBA object references. This layer is also resplensi
for bundling individual calls and using new asynchronousriiace
methods for bundled requests within the CORBA interface.

Although this wrapping seems complicated and does require
some small amount manual coding, most of the work can be del-
egated to generalized template abstract base classesdsee B.
When viewed from the outside, the encapsulated subsysteks lo
just like a distributed CORBA object using the equivalentREA
IDL interface. To the contained object, the wrapper lookaotly
like any other part of the traditional system using the oldr@+
terfaces.

The biggest benefit of using this kind of wrappers is the possi
bility of reusing existing code. While this does not take @utage
of parallelization within a subsystem, it enables the dstion and
parallelization of different subsystems. This can be oagralue,
in particular when multiple memory-intensive algorithmesvé to
be separated across multiple machines. The interfacesdptbby
the wrappers, finally allow wrapped traditional objectsremspar-
ently cooperate with other distributed objects as theyrdreduced
in Section 2.3.

2.2 Replication and Request-Multiplexing

In order for old code to use distributed subsystems, we need a
additional wrapper. Its interface is derived from the old+Cfa-
cade interface, but it translates the messages to corrdisygocalls
to distributed CORBA objects, e.g. those from Section 2.1s
mentioned before, this translation has several aspectsorie it
translates between traditional and CORBA types where bHpta
needs to be copied into IDL structures. Second, small iddaire-
quests may be accumulated and sent across the network ilebund
thus avoiding network traffic overhead.
In addition, we take the opportunity of the wrapper to perfor

multiplexing and re-packeting of requests across a pooluoéf
tionally identical CORBA servers. This enables us to distie
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Figure 3: Multiplexers distribute requests equally to fiimeally
equivalent objects either distributed across a networta¢garallel
ray-tracers) or running in different threads (colocateghting ob-
jects). Note that the multiplexers do not contain the comput
tion classes, rather they supply the requests and managetise

port of the responses. The embedded request managers use a re
quest/callback model and a thread pool to achieve asynehson
communication.
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the computational load evenly using load balancing peréatiny
the wrapper. However, because of the current synchrondusena
of CORBA method calls, multiplexing needs to use the request
callback scheme [SV96] provided by our base classes.

Load balancing is performed by sending requests to the rserve
with the lowest load. To this end, the servers maintain FIB0s-
quests to balance network latencies. The fill-level of tHe§®s is
communicated back to the wrappers piggy-packed on datanesgtu
in the callbacks.

Using this scheme, the multiplexed classes look to the ditsi
like a single, more powerful instance of the same subsysteme.
benefit of this approach is that by using wrappers and mekek,
existing code can fairly easily be wrapped, replicated, thedeby
sped up. While multiplexers fan out requests, the wrappe&et-
tion 2.1 automatically combine and concentrate asynchusme-
quests from multiple clients. Note that both patterns @tiffeneet
our goal of distribution transparency and do not alter thaiegtion
logic of the remaining system at all.

The following pseudo-code shows how a multiplexer for light
computations inherits the interface of the lighting basessland
overloads the computation request method by implementnges
scheduling strategy (see also Figure 6).

I DL:
interface LightOp {
voi d conputelllum nations(in sequence<Request> req);

b

interface Mul tiplexer : LightOp {
voi d addLi ght Op(i n LightOp op);
b

Ct+:
class Miltiplexer : public IDLnultiplexerlnterface {
virtual void addLi ght Op(Li ght Op op)
{ l'ightOpList_. push_back(op); }
virtual void conputelllum nations(Request req[]) {
int idx= determ neBest Server ()
l'i ght OpLi st_[idx]->conputelllum nations(req);
}
protected:
vect or <Li ght Op> | i ght OpLi st _;
}

2.3 Transparent Services

Some subsystems are computational bottlenecks and prtoroge
fer substantial speed-up when they are completely re-imghted
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Figure 4: Distribution and parallelization services po®/support
for implementing advanced computation algorithms.

to take advantage of distribution. Our framework providestrid

bution and parallelization services within the wrappessés that
go beyond plain data transportation and interface adapsioch
as thread-pool handling, mutexes, factories for one-toynand
many-to-one operating threads and their synchronizatiamtjme

system state and type information.

This pattern is the most powerful form of creating a new com-
putation object for the distributed system. It does howegguire
knowledge about the design and behavior of the distribusiem
vices. Because the wrapper classes provide the CORBAanterf
to the other traditional subsystems of the framework, aidigied
or parallel implementation of a subsystem can easily adtesa
directly.

A good example is a class that performs distributed lightimmg-
putation using the PhotonMap algorithms [Jen96] (see Eigur
shows our implementation). We reuse existing code for igaof
photons from the light sources and for reconstructing ilhation
information. Both reused object implementations are weadppith
the patterns described above. Because the algorithm i afés
distributed or parallel nature, it can steer and adapt tactmpu-
tational requirements, e.g. by adding new particle trameyatds on
a multi-processor machine or adding new instances of bliged
objects. This scheme allows the programmer to graduallyersak
lected subsystems aware of the distribution infrastractithout
compromising the remaining system on the way.

The possibility of reusing existing classes simplifies treation
of new distributed subsystems in a straightforward bugeitock
manner. However, a drawback of this approach is the dedici
distributed computing, making the new subsystem more diffto
use when running the application in a serial, single-thedadsh-
ion.

2.4 Discussion

The patterns introduced above offer several benefits:

e New developments within the traditional framework are im-
mediately distributable through the wrapper pattern, Wwhic
offers speedup through replication and multiplexing.

e There is no need for developers of algorithms to bother with
distribution and parallelization issues because the ibistr
tion framework does not alter or interfere with the applmat
logic.

e The distribution and parallelization services offered hg t
framework provide the developer of advanced computation
classes with basic functionality that is guaranteed to @onf
to the overall design.
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Figure 5: Logical data flow within an example distributechlig
ing network performing direct, indirect, and caustic illuation
through different LightOps, some of which are replicated ase a
multiplexer for speed-up.

e The learning effort for beginners can be reduced dramétical
by a transparent distribution infrastructure — in partuf
compared to other distribution frameworks and the large-num
ber of new software concepts introduced by them.

e Our distribution framework transparently supports modula
ization and helps to structure the framework into toolkitgw
well defined interfaces. This can help to reduce the overall
programming effort, and promotes a better understanding of
the big picture.

For each of the above pattern, there is a typical case ofcppli
tion. Like a modular object-oriented program can be vieweae
ious levels of granularity, the patterns support this bodeblock
design strategy. Because the distribution infrastructiges con-
sistent interfaces, the patterns can be combined with ethehn or
be applied to traditional class implementations by a condiion
script. Especially for research and development purpdhespf-
fers a tremendous flexibility. Note, that the multiplexen ¢& used
to easily handle a new parallel implementation of a comjuriat
class, which in turn can be constructed using wrappersy diike
tributed classes, or multiplexers.

3

The Vision rendering architecture [SS95] is an object+agd sys-
tem for physically-based realistic image synthesis. Tghting
Network [SSH 98, SSS98] technology within the Vision frame-
work provides an object-oriented way of dealing with fuontl
decomposition for lighting calculations. It implemente tlight-
ing subsystem for Vision by decomposing the global illurtiora
computations into a set of lighting operators that eachoperfa
partial lighting simulation. Conceptually, these “Lighi€& take

a representation of the light distribution in the enviromtnas in-
put and generate a new representation as output. By congecti
these LightOps in the right way, the lighting simulation ¢encon-
figured flexibly by simulating any light-paths in a multi-ga@sh-
ion [CRMT91].

The Lighting Network acts as a data flow network much in the
spirit of AVS [UFK*89] or similar systems. Figure 5 shows a
example of a very simple distributed Lighting Network. Itegs
two basic LightOps to perform direct lighting, adds theidiind-
ual contributions, and then performs indirect lighting quita-
tions. The result is the sum of the direct and the indirecmiit
nation (also see Figure 8). Direct illumination from ligltusces
is obtained through ray-tracing, the PhotonMap algorittienp6]
computes caustic light paths, and indirect illuminationdmputed
with the irradiance gradients algorithm [WH92]. The whatght-
ing network is managed by a special object called MultiLiigdpt
that implements the lighting subsystem interface towattderovi-

IMPLEMENTATION
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Figure 6: Multiple layers of abstract interface declanagiare com-
plemented by C++ definitions, to give consistent interfaceall
components of the lighting subsystem.

sion subsystems and behaving according to the facade design
tern [GHJV95].

The Renderer subsystem of the Vision framework encapsulate
various screen sampling techniques. It computes intéossctvith
visible objects of the scene and queries the lighting subsy$or
the incident illumination at that point. This illustratdsetclear
separation of independent computation within the Visioreging
framework.

We have applied the presented distribution framework to the
Rendering and Lighting Network subsystem in Vision in that w
allow individual Renderer and LightOp objects to be disttéal
across a network or to be run in parallel through the use efiis.
Figure 6 shows the inheritance relations between the atesf of
the LightOps and the MultiLighting facade. The asynchranou
communication patterns and services are implemented rwittd
C++ base classes. Note that for wrapping traditional cdueCt-+
class on the lower left is a pseudo-polymorphic wrapper tetelp
which requires no manual coding.

Figure 7 shows a running distributed Vision system. Noté tha
hosts 1 and 2 contain multiple concurrent LightOps withirghtt
ing network. They should therefore have multiple processor
enable functional parallelism.

4 RESULTS

This section demonstrates the flexibility of the presentsttibu-
tion and parallelization framework as applied to the Visiender-
ing system. Several distributed LightOps have been imphteae
using the design patterns from Section 2 and we discuss some
of their typical configurations. In order to reuse the triadial
LightOp implementations efficiently, several multiplexalasses
are available along with different scheduling strategi@sis al-
lows building distributed lighting networks, that funatally dis-
tribute lighting calculations. The configuration of the tdisuted
objects is usually specified in a TCL configuration file usihg t
existing scripting engine of the traditional Vision systeaoiding
the introduction of a second tier of abstraction for configyithe
distributed system (compare [Phi99]).

4.1 Efficiency of Asynchronous Communication

In the first example, we show the benefits of the asynchronams ¢
munication pattern used throughout the CORBA implemeortadf
the base classes at the heart of the distribution infrastreic Ta-
ble 1 compares the packeted data transfer within a smatirigh
network using asynchronous requests with an equivalemtanket
using the original interface with fine granularity. Both easise
wrapped traditional LightOps and the same host configuratio

SGl | Onyx | Onyx | 02 |
# processors 4 2 1
R10k @ MHz 196 195 195
Renderer X
Lighting Irr. Grad. | Direct | Combine

The main reason for the speedup3af’% is the low number of
210 CORBA method calls to transfer requests overltiieMBit/s
network in the case of asynchronous communication, cordpare
128,070 synchronous invocations in the second case. Bdath ne
works transfer identical 22.7 MB of request data through BAR
marshaling. It is the synchronous protocol of CORBA thathio
the client until the server has completed the method caltkwvisire-
sponsible for the poor performance in the second case. Thigss
clearly the important fact, that latency can be almost elytinidden
using the asynchronous protocol provided by our distribubase
classes.

4.2 Distributed Rendering

To optimize rendering times in the case of calculating i or
testing new computation class implementations, we pickhepek-
ample from Section 2.2 (see Figure 3). The following configion

of a distributed Vision system shows the best achievabledige
we have found using our framework. It uses 4 hosts with a total
of 8 processors. There are 8 ray-tracers to work in datdiphra
mode and 6 lighting modules. Each group is controlled by aimul

The basic operating system functions are accessed via theplexer. The distribution framework ensures that all comitation

portable operating system adaption layer interface of t6& A-
brary [Sch94]. The communication and remote object craatio
is done using the CORBA implementation VisiBroker of Inpris
Corp. [VG98]. To facilitate further development and mairgtace,
the design of the base classes follows the guidelines ofalede-
sign patterns [GHJV95, CS98, LS96, SHP97, McK95].

1The external polymophism pattern [CS98] allows treatingn-no
polymorphic classes as if they have the proper inheritaatzionship, by
providing all classes with a method that simply delegatesctils to a suf-
ficiently global template signature adapter (that's why @alled external)
who in turn calls the method that performs the task.

between the two multiplexers is done asynchronously.

SGI | Onyx | Onyx | 02 | 02
# processors 4 2 1 1
R10k @ MHz | 196 195 | 195 | 195
Renderer 4 2 1 1
Lighting 4 2 - -

The lighting hosts execute a traditional implementatioa bfa-
diance Gradients [WH92] LightOp, which is wrapped for dinir
tion. Additionally, the wrappers on the multiprocessingchiaes
also include a multiplexer that executes the incoming regguin
parallel using a thread pool. Because there are multiptatts per
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Figure 7: Example of a running distributed Vision systeme Timaster renderer controls the data-parallel activity efdlave renderers on
hosts 3, 4 and 5. The MultiLighting on host 0 is the facade eflighting subsystem, which is a lighting network residimghmsts 1 and 2
(it can also be further distributed as shown in later exas)plks entry point is the MasterLightOp, which controls ttker LightOps. Note
that this functional parallelization also communicategakronously in a pipeline fashion (indicated by the sotitba&s), enabling parallel
execution if a host has multiple processors. A single Nethdan and a HostManager on each host are responsible foitiappisng the
system onto the network by providing initial object factongthods (dashed arrows).

CPU, the multiplexer synchronizes them in order not to @aatl
the machine. Configuring this system, required just to name t
hosts and the Lightop with it's parameters in a configurafitn
The TCL scripts for system setup take care of distributirgydh-
jects using the Net- and HostManager of Figure 7. This digted
system is compared to the traditional Vision system withralsi
thread of control, running on the fastest machine in a siadtiress
space and calculating lighting with the very same LightOplan
mentation.

the three other LightOps are executed on multi-processohimes,
because their reconstruction method is fast and the conuattiom
between them can be optimized, if the CORBA implementation
supports object collocation. In order to drive this compligt-
ing subsystem, two hosts execute rendering objects cteurby a
multiplexer in a data-parallel way.

As one can see from Table 3, the speedup obtained by this setup
is not as good as in the first example. But even the advantage of
the non-distributed version of running in a single addrgszcs,

As Table 2 shows, the speedup obtained is near the thedretica does not outweigh the communication overhead of the digtib

maximum of 12.5%. The overhead of 90 seconds consists of
30 seconds session setup, 5 seconds of additional parsitigeon
CORBA startup client and another 5 seconds delay for allgwin

system. Our profiling shows that the performance differéndbe
theoretical maximum of 14.3% is mainly due to process idfest.
This occurs for example, if the calculation of one upstreaghtOp

the hosts to clean up the CORBA objects before the main CORBA is sufficiently delayed. Since the underlying Lighting Netw is

startup client shuts down all Vision instances. After satting this
overhead, we obtain a penalty=sf13% during the rendering phase
for the distributed system. We believe this is a very goodiltes
given such a general and unintrusive distribution infragtire.

4.3 Distributing Complex Lighting Computations

The functional decomposition of a lighting network offetset
biggest potential for distribution and parallelization tlze risk of
high communication costs. As shown in Section 4.1, the asyn-
chronous request-callback communication paradigm istalpeo-
vide a partial solution for that problem. In the followingaswrple

we make heavy use of the patterns from Sections 2.3 and 2i4. Th
configuration uses 3 hosts with a total of 7 processors:

SGI | #proc. R10k| @ MHz | Renderer| Lighting
Onyx 196 4 Photon Map,
Direct, Combine
Onyx 195 2 X Photon Map,
Irrad. Grad.
Octane 175 1 X Photon Map

In this setup, the reconstruction method of the Photon Map

entirely pull-driven, the pipeline is blocked. We try to eowith

that problem to some extent by allowing the asynchronoesfaxte
to drive three parallel streams at a time. Additionally, tgource
handling within the base classes allows running the rengedm-
putation concurrently with a lighting computation, reggtin a
kind of interleaving CPU-usage scheme, if the lighting pigeon

the host is stall.

This example shows that there are cases where the full trans-
parency of the distribution infrastructure cannot hideeir@mt lim-
itations due to coarse grained communication patterns isfieg
subsystems. Note however, that this behavior is mostly bl@mo
of the non-distribution aware algorithms of the lightingtwerk
and not so much a general drawback of the distribution frame-
work. However, even with the very limited success, we skt g
some speed-up without any change to the application logic.

Apart form that, one has also to take into account, that wéile
traditional system performs quite well in this case in teohexe-
cution speed, it is severely limited by the host's memorpueses.
Especially the PhotonMap LightOp needs to store many plsoton
that have been shot into the scene when working with largeesce
descriptions. The distributed PhotonMap LightOps in thiane-
ple have the memory of three hosts to their disposition. Heurt
more, the initial shooting of particles is done in paralfelducing

LightOp takes much more time to process a request, than any ofthe Lighting setup time needed to one seventh (there arecégro

the other LightOps in the lighting network. Consequentlypuaiti-
plexer is used to distribute this LightOp onto 3 hosts. Intst,

sors on the three hosts), which is of great value when siinglat
high quality caustics.



wallclock asynchronous wrapped-only
seconds for LightOps LightOps
Session Setup 22.26 23.37
parsing Scene | | == | e |- 580 | [ = [ e Feem ooy
Lighting Setup M= 1.56 [ 1.68
Renderer Setup |, s 1l o E% s 0.30 | | e H coeee H % 0.34
Render Frame e e o 1,922.06 S —— - 2,916.95
Total 1,977.36 2,974.92

66 % 100 %

Table 1: Packeted asynchronous data transfer within adigiietwork compared to LightOps using CORBA's synchron@ggiest invoca-
tion.

wallclock distributed traditional
seconds for System Vision
Session Setup 31.91 o -
Parsing Scene 5.61 -
Lighting Setup | - 0.14 { Ry e H e } -
Renderer Setup " 0.36 -
Render Frame | ~ 317.03 2,359.20
Total 387.41 2,380.15
16 % 100 %

Table 2: A distributed system using two multiplexers, coltitng the data-parallel renderers and the lighting olgjeart the left side, are
compared to the traditional single-threaded system.

Although there certainly is a price to pay for the flexibildfour that specify the location and parameterization of specificutes
distribution strategy, we obtain high degrees of freedoroinfig- in a network. Figure 8 gives an impression, of how the flexible
uring the distributed system and adapting it to the chadleraf a structure allows the configuration of the whole distribusgdtem
specific lighting network. for different purposes, ranging from speeding up previemdes-

ings to experimenting with complex lighting networks catisig
of many different distributed lighting simulation algdmibs.

5 CONCLUSIONS Future work on the distribution infrastructure will contete
on recovering some of the efficiency that we lost in the precks
We presented a general approach on providing a transpafeas-i particular, it would be useful if the system would take cafr¢he
tructure for distributing object-oriented systems anddugs in- distribution of modules across a network autometically jpexdorm
frastructure for the distribution and parallelization efdering and ~ better load-balancing. However, due to the dynamic natfieio
lighting computations. While we created several desigtepas to ~ application, this requires some knowledge about the coatipuial
hide CORBA and the distribution infrastructure from the rage characteristics of the different modules. Making this e at
system programmer, our system provides distribution sesvto the wrapping level or during run-time would allow us to statly
the advanced application programmer and still offers actesill allocate and maybe dynamically move modules across a rietwor

basic distribution classes for sophisticated tuning ifassary.
The use of the CORBA middleware allowed us to abstract from 6 ACKNOWLEDGEMENTS
much of the underlying communication infrastructure. Canytto
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wallclock distributed traditional
seconds for System Vision
Session Setup 79.14 -
Parsing Scene 10.43 -
Lighting Setup 4.58 -
Renderer Setup 0.28 -
Render Frame 1,498.39 6,988.45
Total 1,665.28 8,174.22
20 % 100 %

Table 3: On the left, the lighting network is distributed amgd hosts. On the right, the same computations are done kéttraditional
single-threaded system.
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Figure 8: Data flow and intermediate results computed bytalalised lighting network performing direct, indirect,cnaustic illumination
through different LightOps.



