
Distribution and Parallelization Strategies for
Integrated Simulation, Visualization and

Rendering Systems

Verteilungs- und Parallelisierungsstrategien
für integrierte Simulations-, Visualisierungs-

und Renderingsysteme

Der Technischen Fakultät der
Universität Erlangen-Nürnberg

zur Erlangung des Grades

DOKTOR-INGENIEUR

vorgelegt von

Peter Kipfer

Erlangen – November 2002

Als Dissertation genehmigt von
der Technischen Fakultät der

Universität Erlangen-Nürnberg

Tag der Einreichung: 22. November 2002
Tag der Promotion: 18. Februar 2003
Dekan: Prof. Dr. A. Winnacker
Berichterstatter: Prof. Dr. G. Greiner

Prof. Dr. U. Rüde

Abstract

In nearly all scientific disciplines, numerical simulation plays an important role for ver-
ifying design constraints, performing quantitative and qualitative measurements and
asking what-if questions. The basis for successful implementation is contributed by well
understood numerics research in computer science. This has enabled the development
of highly accurate simulation codes with predictable error bounds.

Nowadays concrete numerical simulation problems produce enormous amounts of
result data because of the continuous increase in computing power of large scale com-
puting facilities. The results must be processed with scientific methods for visual dis-
play, in order to allow easy interpretation. The resources needed for these methods
surpass the capabilities of current generation desktop systems by far. Additionally, the
comparably low bandwidth of the I/O channels of supercomputers strongly suggest to
perform the post-processing on the large machine.

Additionally, nowadays available computer architectures provide a large variety of
special purpose hardware. Many of these features have been introduced to deal with
common bottlenecks. High-performance applications therefore have to employ these
features in order to make full use of the processing potential of current hardware. With-
out using these features, the application will not be able to utilize the gain in processing
speed of the next hardware generation.

This thesis examines several principal strategies for handling distribution and par-
allelization. A classification is worked out to demarcate the areas of application. Using
these strategies, a library for integrated simulation, visualization and rendering on su-
percomputers and desktop systems is implemented. It offers a clear separation of func-
tionality by employing several abstraction levels to the programmer. Therefore, this
thesis presents a substantial contribution to scientific computing to cope with grand-
challenge problems. It supplies the enabling key technology for efficient post-processing
for visualization and rendering on the supercomputer.

Organization The thesis is split into three major parts. The first part presents a clas-
sification of distribution and parallelization strategies and discusses their properties. In
the second part, the gridlib framework library is presented. It has been developed in

4 Abstract

the context of this thesis to evaluate the strategies for building a software infrastructure
for integrated simulation, visualization and rendering. Detailed descriptions of appli-
cations using the gridlib library are presented in the third part of the thesis. They deal
with several specific aspects of nowadays computer architectures and provide efficient
solutions for high performance applications.

After a summary of the results of this thesis, the appendix lists the most important
grid management interfaces of the gridlib library. An additional glossary explains tech-
nical terms and abbreviations. The three main parts feature margin labels to draw the
attention of the reader to miscellaneous aspects:

G
page 145

Technical terms and abbreviations within this paragraph are explained
in the glossary section. There are also references to explanatory notes
within the text.

Facts
This list assembles the most important facts that have to be taken into
account when implementing an application.

PRO—CON

This presents a discussion of the pros and cons of the strategy treated.
They are the most important aspects when considering the usage of
the strategy within an application design.

Revision 1.4
c

�
2002,2003, Copyright by Peter Kipfer

All Rights Reserved
Alle Rechte vorbehalten

6 Abstract

Contents

Abstract 3

List of Figures 12

List of Tables 13

List of Program Listings 15

List of Color Plates 17

Acknowledgements 19

I PARALLELIZATION AND DISTRIBUTION STRATEGIES

1 Coarse strategies 27
1.1 Introduction 27
1.2 Message passing systems 28

1.2.1 PVM 28
1.2.2 MPI 29

1.3 Distributed object-oriented systems 32
1.3.1 ACE 32
1.3.2 CORBA 34
1.3.3 TAO 36
1.3.4 The POA object adapter 38

1.4 Discussion 40

2 Intermediate strategies 43
2.1 Introduction 43
2.2 Pipelining 44
2.3 OpenMP multi-threading 45
2.4 Discussion 47

3 Fine strategies 51
3.1 Introduction 51
3.2 SIMD processing 52
3.3 Custom hardware programming and design 55
3.4 Discussion 58

8 CONTENTS

II INTEGRATING SIMULATION, VISUALIZATION AND RENDERING

4 The gridlib project 65
4.1 Introduction 65
4.2 Overview 66
4.3 Storage abstraction layer 67

4.3.1 Memory Pools 67
4.4 Element abstraction layer 68

4.4.1 External Polymorphism 68
4.5 Mesh abstraction layer 72

4.5.1 Algorithmic abstraction 72
4.6 Clients 74

4.6.1 Services and Utilities 74
4.6.2 Visualization and Rendering 75

5 gridlib applications 79
5.1 Evaluating the quality of tetrahedral grids 79
5.2 Progressive isosurfaces from tetrahedral grids 80
5.3 Fast time-dependent isosurfaces 80
5.4 Visualization across partitions 81
5.5 Mesh registration 81

III APPLIED PARALLELIZATION AND DISTRIBUTION

6 Simulation 85
6.1 SIMD processing for Lattice Boltzmann methods 85

6.1.1 Lattice gas 85
6.1.2 Lattice Boltzmann 86
6.1.3 Driven cavity simulation 87

7 Visualization 93
7.1 Interactive display of time dependent volumes 93

7.1.1 Displaying scalar volumes 93
7.1.2 Displaying vector volumes 98

7.2 Local exact particle tracing 99
7.2.1 Integration methods 100
7.2.2 Cell classification 102
7.2.3 Parallel pre-processing 102
7.2.4 Building a smooth curve 104

8 Rendering 107
8.1 Transparent Distributed Processing For Rendering 107

8.1.1 Distributed Lighting Networks 108
8.1.2 Design Patterns for Transparent Distribution 108

CONTENTS 9

8.1.3 Discussion 113
8.2 Parallel rendering 116

8.2.1 Rasterizer performance 117
8.2.2 Optimization 120

8.3 Ray tracing in hardware 121
8.3.1 System Overview 122
8.3.2 Implementation 126
8.3.3 Results 127

IV CONCLUSION

9 Summary 135

10 Future Challenges 139
10.1 Integration of functionality 139
10.2 Flexible SIMD processing 139
10.3 Integrated FPGA technology 140

V APPENDIX

A Glossary 145

B Color Plates 151

C Interface inheritance in gridlib 159

D The gridlib mesh interface 163

Bibliography 165

Index 170

10 CONTENTS

List of Figures

1 Parallelization effort . 24
2 Classification of parallel architectures 25
3 Amdahl’s law of scalability . 26
1.1 The PVM master–slave programming model 28
1.2 Buffered point-to-point communication in MPI 30
1.3 Derived data types in MPI . 31
1.4 Architecture of the ACE framework 33
1.5 The CORBA ORB architecture . 35
1.6 The TAO architecture . 37
1.7 Using the Portable Object Adapter 39
2.1 A pipeline example . 44
3.1 Using SIMD instructions . 52
3.2 Computing the dot product with SIMD 53
3.3 Computing the square root with SIMD 54
3.4 nVIDIA register combiners . 56
3.5 Internal layout of the Virtex FPGA 57
3.6 Adding two integer vectors in hardware 58
4.1 The gridlib architecture overview . 66
4.2 The external polymorphism design pattern 69
4.3 Arranging the storage of primitive objects 70
4.4 Pseudo–polymorph call execution 71
4.5 Renderer hierarchy . 76
6.1 Lattice gas . 86
6.2 Lattice Boltzmann . 87
6.3 Driven cavity flow . 88
6.4 Performance of the SIMD Lattice Boltzmann solver 89
6.5 Cache optimized driven cavity simulation 90
7.1 Tiling of volume slices . 94
7.2 The stream processing pipeline . 95
7.3 Multi-pass rendering of large volumes 96
7.4 Time dependent scalar volumes . 97
7.5 Processing time dependent volumes 98
7.6 Time dependent vector volumes . 99

12 LIST OF FIGURES

7.7 Building a smooth particle curve . 104
7.8 High-quality visualization for particle tracing 105
7.9 Local exact particle tracing . 105
8.1 Wrapping existing computational objects 109
8.2 Multiplexers for parallelization . 110
8.3 Services for distributed LightOps . 112
8.4 Data flow for parallel rendering . 117
8.5 The distributed framebuffer . 118
8.6 Scaling of parallel rendering . 119
8.7 Efficiency of parallel rendering . 119
8.8 Saturation of communication channels 120
8.9 The circuit layout of the FPGA ray tracer 123
8.10 Intersection and normal calculation modules 125
8.11 The FPGA development board . 126
8.13 Scenes rendered with the FPGA ray tracer 128
8.12 The quadric test scene . 129
C.1 gridlib vertex inheritance diagram 159
C.2 gridlib edge inheritance diagram . 160
C.3 gridlib geometry element inheritance diagram 160
C.4 gridlib edge collaboration graph . 161
C.5 gridlib vertex collaboration graph 162
C.6 gridlib geometry element collaboration graph 162

List of Tables

1.1 Comparison of distribution and parallelization concepts 41
2.1 Comparison of modular program design and pipelining 48
4.1 Visualization algorithms of the gridlib 78
7.1 Comparison of integration methods 101
7.2 Extraordinary cells in local exact particle tracing 102
8.1 Efficiency of asynchronous data transfer 112
8.2 Using multiplexers for data-parallel tasks 115
8.3 Performance of a distributed lighting network 116
B.1 Visualization algorithms of the gridlib 157

14 LIST OF TABLES

List of Program Listings

1.1 Typical MPI programming pattern 29
2.1 Using OpenMP for shared memory multi-threading 46
3.1 Computing the dot product with 3DNow! 60
3.2 Assembler code for integer vector addition 61
4.1 Algorithmic abstraction on the mesh level 77
6.1 Lattice Boltzmann algorithm for driven cavity flow 87
6.2 Comparison of standard to SIMD-enabled programming 91
7.1 Pre-processing for local exact particle tracing 103
8.1 A multiplexer for lighting computations 111
8.2 The FPGA trace and shade algorithm 130
8.3 FPGA intersection module pseudocode 131

16 LIST OF PROGRAM LISTINGS

List of Color Plates

B.1 Drawing modes of the rendering subsystem 151
B.2 Visualization examples . 152
B.3 Using the FPGA ray tracer . 153
B.4 Properties of the FPGA ray tracer . 153
B.5 A distributed lighting network . 154
B.6 High-quality visualization for particle tracing 155
B.7 Progressive transmission and visualization 155
B.8 Local exact particle tracing . 156
B.9 Evaluating the quality of tetrahedra 156
B.10 Progressive isosurface visualization 158
B.11 Fast isosurface extraction across partitions 158

18 LIST OF COLOR PLATES

Acknowledgements

First of all, I like to thank my supervisor Prof. Günther Greiner for his incredible
support of my work, his friendship and constant willingness to explain complex mathe-
matical topics in an understandable way to computer graphics people like me. Working
with him has always been a pleasure both on the professional and human side. For in-
spiring discussions and valuable advice, I am grateful to Prof. Ulrich Rüde. He focused
my interest on flow simulation and supported me through all the stages of this thesis.

I would like to extend a very special thank to Prof. Hans-Peter Seidel, Prof. Thomas
Ertl and Prof. Philipp Slusallek who got me involved with computer graphics during
my studies and provided an initial place of employment. Thank you for the good start !

Regarding the development of the gridlib library, I have to thank several people for
supporting it. Especially Ulf Labsik, who helped to implement the basic meshing func-
tionality, Frank Reck and Stefan Meinlschmidt, who pushed the visualization part and
Dr. Christof Rezk-Salama for giving support with direct volume rendering techniques.

Research related to the gridlib development has also been performed and supported
by the gifted team at the system simulation chair, namely Dr. Frank Hülsemann, Ben
Bergen and Thomas Pohl. They provided valuable insights in numerical issues and vol-
untarily hosted my advanced C++ programming course.

This thesis would not have been possible with the support of all these people. Es-
pecially, I like to thank Prof. Marc Stamminger for proof-reading it and for sharing his
profound knowledge on rendering topics.

Over all these years, the work would have been boring without all the people of the
computer graphics team. Instead, it was real fun and I am sure I will miss our secretary
Maria Baroti, the researchers Michael Bauer, Michael Scheuering, Grzegorz Soza, Fer-
nando Vega and Gerd Sussner. You always made me look at the bright side of graphics.
Especially, I like to thank Roman Sturm, who knows everything about Macs and videos,
and my office mate Christian Vogelgsang, who speaks C++ more fluently than German,
for their friendship and discussions.

20 Acknowledgements

Finally, and most of all, I like to thank my parents for supporting me both finan-
cially and ideologically, and my sister Vera and her husband Roland for spending so
much time with boring computer science guys. My franconian roots have always been
reinforced by the fabulous musicians of Die ZEIDLER, Theatermusik Hüttenbach and
Stadtmusik Hersbruck and ensured me that there is more to life than computer graph-
ics.

Peter Kipfer

Part I

Parallelization and Distribution
Strategies

23

Although computational and memory resources have increased tremendously over
the past years, solving grand challenge scientific problems still isn’t possible on desktop
or workgroup size machines. Some specialized areas already managed to break Moore’s
law1, but it is doubtful whether this will become the regular case for all hardware com-
ponents. The available resources of large scale computing facilities, i.e. supercomput-
ers therefore must be orchestrated carefully to work together. Strategies for resource
handling must be developed, that help to structure the problem and provide the pro-
grammer with complexity warranties for communication bandwidth, latency, scaling,
bridgeable distance and others.

Parallelization and distribution strategies require a good understanding of the target
system architecture. Because of the enormous differences in resource access speed, suc-
cessful creation of a parallel or distributed application must honor the peculiarities of
the target system. [Sch01a] has examined them for building an automatic load-balancing
framework for Java programs. In the following, we briefly review architectural classi-
fications and programming models, in order to give a short overview of parallel and
distributed computing resources that have been examined in this thesis.

Flynn [Fly72] presented one of the most commonly used classifications of paral-
lel architectures by examining dependencies between processor instructions and data
streams:

G
page 145

➟ single instruction, single data (SISD) is the classical von Neumann architecture
that does not exhibit parallelism.

➟ single instruction, multiple data (SIMD) systems are array or vector computers.
Every instruction is executed on multiple data simultaneously.

➟ multiple instruction, single data (MISD) machines have not been built yet, be-
cause multiple instructions would work on the same data simultaneously, which
is very questionable.

➟ multiple instruction, multiple data (MIMD) systems have multiple processors
working independently on multiple data. This is the most flexible architecture.

MIMD systems can be distinguished further by the memory each processor can ac-
cess directly. A workstation cluster therefore is classified as no remote memory access
(NORMA) architecture, while a Cray T90 system is classified as a uniform memory
access (UMA) system. Because the cluster architecture demands more programming ef-
fort and the latter architecture is very expensive, intermediate solutions have been built
that introduce distributed memory resources that are accessible uniformly with addi-
tional hardware support. Because local memory has lower latency, these architectures
are classified as non uniform memory access (NUMA) . The NUMA concept however
introduces another dependency: In order to accelerate memory access, every processor
maintains a cache that will become inconsistent. Here, the programmer has to ensure,
that he never accesses out-of-date data. Therefore, a solution has been proposed using

1nVIDIA claims to double rendering performance in 8 months (Moore: 18 months) [NVa]

24

additional hardware that automatically keeps the caches in sync. The SGI Origin system
is one of these architectures classified as cache coherent NUMA (ccNUMA) .

Typically, parallelization and

0

20

40

60

80

100

fine intermediate coarse

pa
ra

lle
liz

at
io

n
ef

fo
rt

parallelism

compiler
programmer

Figure 1: Depending on the level, parallelization and
distribution strategies are supported differently.

distribution strategies rely on pro-
grammer and compiler working
together. Depending on the ab-
straction level, the compiler can
perform automatic parallelization
and hide details from the pro-
grammer (� figure 1). How-
ever, subsequent parallelization
or vectorization of existing im-
plementations is nearly impos-
sible if they have been written
without paying attention to spe-
cific issues of parallel computa-
tion. Therefore the compiler of-
ten has only very limited success in performing the task automatically. Manual inter-
vention is indispensable even on the lowest level. Consequently, it is common to rewrite
critical sections of an algorithm for parallelization and distribution. This thesis investi-
gates the existing possibilities for creating well structured distributed and parallel pro-
grams right from the start that are highly maintainable and efficient.

According to the task the parallel program has to perform, three major models can
be distinguished [Wal95]. Mixed forms are likely (� figure 2).

Facts ➟ data parallel: The same algorithm can be applied to different parts of a partitioned
data set simultaneously without dependencies. This usually is the case with pro-
grams for the single program, multiple data (SPMD) class, which is a relaxation
of the SIMD class that is not restricted to executing the same processor instruc-
tion simultaneously, but allows more generally to run the same program on mul-
tiple data. Note however that asserting the no-dependency property frequently
involves complicated duplication and synchronization of boundary information.
Most distributed and parallel programs using message passing libraries fall in this
category.

➟ functional parallel: Different steps of the same algorithm are applied to differ-
ent parts of the data simultaneously. This usually is the case with pipelined algo-
rithms. Note that it must be ensured to execute the steps of the algorithm in the
correct sequence.

➟ concurrent parallel: Different algorithms operate on the same data to compute
competing results. The first result is taken and the other algorithms still running
are terminated.

25

vectorization SPMD
data parallel

message
oriented

shared
memory

MIMD
SIMD

data
flowMIMD

processor
array

multi
pipeline

multi
processor

SIMD

memory link
(shared memory)

data types involved

parallelism

programming model

control flow

processing environment

communication environment

data types
structured

data types

program

scalar

parallelism
program

parallelism

(distributed memory)
memory link

structure

(distributed memory)
message passing

pipeline

Figure 2: Classification of parallel computing architectures according to [Gil93].

Programming efficient parallel and distributed programs is not trivial. Additionally,
Amdahl’s law [Amd67] states that for every program there exists an upper bound of
scalability because of serial program parts, limited communication bandwidth and pro-
cess idle times for synchronization (� figure 3).

26

CPU bound memory bound unsolvable

number of processors

sp
ee

du
p

original serial program

theoretic parallelization

not all parts are parallelizable

ideal parallelization

realistic parallelization with imbalance

Figure
3:A

m
dahl’s

law
states

thatscalability
is

notendless.

1
COARSE STRATEGIES

Form must follow function.

— Le Corbusier

1.1 Introduction

Whether one adds distribution and parallelization functionality to an existing system,
or designs functionality that is to be integrated into a new system right from the start,
there are some fundamental decisions to be made. In this chapter, we focus on concepts
that implement these design issues.

All concepts provide a hierarchical layering of functionality in order to abstract from
the actual hardware oriented implementation. They differ in the provided communica-
tion concept, the supported programming languages and the bridgeable distance.

Several object-oriented frameworks for supporting parallel or distributed program-
ming have been suggested, e.g. POET [MA] or EPEE [Jez93]. POET is a C++ toolkit that
separates the algorithms from the details of distributed computing. User code is written
as callbacks that operate on data. The data is distributed transparently and user code is
called on the particular nodes on which the data is available. Although POET as well
as all other frameworks abstracts from the underlying message passing details, it re-
quires to adapt the algorithms to the given structure of the framework and is thus not
transparent to the programmer.

Other approaches view local resources only as a part of a possibly world-wide, dis-
tributed system (“computational grids”, “world-wide virtual computer”), for instance
Globus [FK97] or Legion [GLFK98]. While these are certainly a vital contribution to dis-
tributed computing, the demands on the code are significant and by no means transpar-
ent to the programmer, which always should be the main goal of programming efforts.
In the following, we present the most prominent message passing libraries and object-
oriented communication frameworks.

28 Coarse strategies

1.2 Message passing systems

In order to communicate over address space boundaries, one of the oldest communica-
tion concepts in computer science is the message passing concept. The idea is to provide
a system level facility that forwards blocks of data that have a specific sender and re-
ceiver. The communication must be started explicitly by the sender through providing
the data block to transfer to a system call. For efficient implementation of the system
call, the message passing is most often done in synchronous mode, which means that
both sender and receiver have to issue a corresponding system call. Either the sender or
the receiver is blocked until the counterpart reaches the synchronization point, at which
the transfer occurs.

1.2.1 PVM

The Parallel Virtual Machine (PVM) [GBD
�

94] communication library offers the user a
console for program control of a virtual machine consisting of a configurable number of
real machines. The parallel programming model is the master–slave model where a des-
ignated master process is started that distributes the workload to the slaves and waits
for their completion. The results are collected by the master for output. The creation of
the slave processes therefore is equivalent to forking worker threads on shared memory
machines. The PVM library takes care of distributing them to the participating hosts.
The pvm spawn() function creates the slave processes and returns identifiers for future
reference.

Exchanging data between all participating pro-

Master

Slave 0

Slave N

Figure 1.1: PVM offers the master–
slave programming model.

cesses is done by explicitly packing the data into
a message buffer. PVM offers several calls to cre-
ate message buffers and ensures a platform inde-
pendent data format within the buffer. The mes-
sage may contain data of different types, but ev-
erything must be packed into the buffer by PVM
routines that usually perform a copy operation.
The message can then be sent to another process
by calling pvm send() with the process identifier
of the receiver. Recent PVM revisions also allow to
attach a tag to the message for additional classi-
fication of the incoming message by the receiver,
who has to unpack the data from the buffer. This
again is a copy operation. Furthermore, the data

layout in the buffer must be known implicitly to the receiver, as there is no query func-
tion or abstract declaration of the buffer content. The actual data transfer will only take
place, if both sender and receiver call the appropriate PVM function. The processes are
blocked until the peer process answers.

1.2 Message passing systems 29

The usual program skeleton of PVM distributed applications therefore is rather
rigid:

Master Slave
① Create the slaves

② Send work data to slaves

③ Collect results

① Wait for work

② Compute result

③ Return result to master

1.2.2 MPI

The Message Passing Library (MPI) [MPI97] is a standardized definition of the message
passing data transport paradigm. It has evolved since 1994 to the current version 2.0. It
is supported by nearly every multi-processor environment.

MPI is most often used for implementing SPMD class programs. The number of
participating processes is fixed and determined upon program startup by the library.
As every process executes the same program code, MPI provides identification routines
that allow each process to find its place in the processing environment and perform its
task. The resulting typical pattern of an MPI program is shown in listing 1.1.

#include <mpi.h>

int
main(int argc, char *argv[])
{
int npes,mype;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &mype);

if (mype == 0) {
.... do some master thing
MPI_Recv(...);

}
else {

.... do some slave thing
MPI_Send(...);

}

MPI_Finalize();
}

Listing 1.1: The typical MPI programming pattern.

30 Coarse strategies

Communication in MPI takes place between members of a communicator . Initially,
all participating processes are sharing the MPI COMM WORLD communicator. In order to
restrict communication to a group of processes, sub–communicators can be created. This
is also very useful for library functions that may not interfere with the main programs
message exchange.

do
some
work

do
some
workcopy buffer

post send

transfer transfer

post receivewait for receive

MPI BUFFER ATTACH

MPI BSEND

MPI BUFFER DETACH

MPI RECV

Figure 1.2: Control flow for blocking, buffered point-to-point message passing in MPI.

One goal of the MPI developers was to make the communication most efficient by
minimizing the number of copying steps that take place and allowing to run computa-
tion and transmission in parallel. MPI therefore has three basic communication modes:

Facts ➟ Blocking point-to-point message transfer guarantees that the provided message
buffer can safely be reused when the call completes. The MPI system can choose to
copy the data to a system buffer (buffered send � figure 1.2) or directly transmit it
to the receiving buffer (synchronous send). There are special MPI calls to enforce
one of the methods.

➟ Non-Blocking point-to-point message transfer calls return immediately. The pro-
vided data buffer may not be used by the program until MPI has completed the
transfer. This condition can be queried selectively for specific messages. The trans-
fer again can be either buffered or synchronous and a specific method can be en-
forced by appropriate calls.

➟ Collective communication operations for broadcasting, gathering and scattering
of data and simple barrier synchronization. The participating processes are deter-
mined by the current communicator scope.

1.2 Message passing systems 31

Note that MPI distinguishes the handling of the message buffer (blocking � non-
blocking) from the actual data transfer operation (buffered � synchronous). It can
therefore satisfy several different communication paradigms of an application. How-
ever, the fundamental requirements for a client, which are a fixed number of processes
and knowing the receiver of a message, cannot be circumvented. MPI is also very lim-
ited in its interoperability.

By far the most common field of application for MPI are simulation codes for super-

G
page 145

computers. Although these architectures most often do not supply fast shared memory
communication, it is common that there are MPI implementations tuned to a specific
machine by the manufacturer in order to exploit fast node interconnects. As MPI is one
of the few well established standard libraries on supercomputers, the consequence is
that writing somewhat portable supercomputer applications is equivalent to employ-
ing MPI.

MPI Type Commit(newMPItype);

MPI DOUBLE PRECISION,
MPI Type Vector(YMAX, 1, XMAX,

int newMPItype;

double matrix[XMAX][YMAX];

&newMPItype);

XMAX

Y
M
A
X

MPI Send(&matrix[4][0], 1, newMPItype,...);

Figure 1.3: Deriving and using new data types for MPI message passing.

A MPI message must consist of one or multiple instances of a single data type. MPI
declares symbols for all primitive data types. In order to be able to send mixed data type
messages, one needs to define a new derived MPI data type that is built from known
primitive data types. There are several construction functions that declare and install
the new data type at runtime. Once defined, it can be used like any primitive type, and
MPI will take care of representation compatibility of floating point parts and endianess
of integer parts. A type declaration essentially works like declaring a C struct that fits
the data layout. Additionally, it can contain strides for padding. Figure 1.3 shows an
example of how to declare a new vector type that represents a matrix column. Using
the new type, a column vector can be transferred by simply specifying the top column
element and the new type identifier to the MPI calls.

32 Coarse strategies

For advanced communication patterns, MPI has additional functionality:

Facts
➟ Message probing for checking whether a specific message is receivable.

➟ Persistent communication for optimized repeated communication (for the life-
time of the program).

➟ Thread management at runtime.

➟ One-sided communication for simple asynchronous update of specific memory
locations.

➟ Parallel file I/O on parallel (block striped) file systems to circumvent yet another
supercomputer bottleneck.

➟ External interfaces to other languages and communication libraries.

➟ “In place” buffer usage for employing the same buffer for send and receive oper-
ations.

Unfortunately, most of the interesting features on the above list are not supported
with current MPI implementations. They are part of the MPI 2.0 standard which is not
yet fully implemented on current supercomputers.

1.3 Distributed object-oriented systems

The basic idea of object-oriented programming to encapsulate data and algorithms car-
ries over nicely to distributed systems. The “naturally” separated address spaces of a
distributed algorithm strongly suggest object-oriented design, which in turn enforces
well defined interfaces. Because data transfer between address spaces or networked
computers is not trivial, it must be handled in a consistent and extendable way for
all participating objects to make it comprehensible for the programmers. Hierarchical
structures must be available to foster the reuse of existing functionality, minimize the
development effort for implementing a higher level interface and to abstract from im-
plementation details, like available hardware.

1.3.1 ACE

The task of the ADAPTIVE Communication Environment (ACE) [Sch94] is to provide
a unified interface for basic communication mechanisms on different platforms. The
abstraction comprises simple encapsulation of available system calls and software solu-
tions for calls not available on the current platform.

1.3 Distributed object-oriented systems 33

Figure 1.4: The hierarchical architecture of the ACE framework. Figure taken from
[Sch94].

All functionality is implemented with strongly typed C++ interfaces. Therefore, the
ACE framework allows much better syntax checking and more consistent C++ pro-
grams than using the C system calls directly. The system calls are bundled within the
OS Adaption Layer . As figure 1.4 shows, it provides platform independent support for
thread control, synchronization mechanisms, inter-process communication, event de-
multiplexing, explicit dynamic binding, memory mapped files and management func-
tionality for shared memory areas. Implementations of the OS Adaption Layer exist for
many UNIX dialects, the Win32 API, OpenEdition MVS and several real–time operating
systems (VxWorks, LynxOS,. . .).

On top of the OS Adaption Layer, there are C++ Wrapper for higher order routines

G
page 145

for communication, synchronization and virtual memory handling. They are of great
value for writing reusable code, developing reentrant objects and avoiding common
thread synchronization pitfalls.

ACE has been carefully designed for generating highly efficient code. There is almost
no performance penalty compared to the direct usage of the system calls. The achieved
type safety is therefore of even greater value. The ACE framework uses for the imple-
mentation of the C++ Wrappers many of the design patterns described in [GHJV95].

Here is a short overview of the ACE services:

Facts➟ Generic atomic operations (barriers, recursive mutexes, tokens, timers)

34 Coarse strategies

➟ Automatic semaphores (locks, guards, conditions)

➟ Thread Manager / Thread specific storage

➟ Event de-multiplexing

➟ Service initialization and configuration

➟ Layered service streams

➟ Middleware applications (CORBA ORB adapter)

1.3.2 CORBA

The Common Object Request Broker Architecture (CORBA) [OMG97b] is at the heart

G
page 145

of the Object Management Architecture (OMA) [Sol95], an open, object-oriented mid-
dleware architecture defined by the Object Management Group (OMG) [OMG97a]. The
goal is to enable the collaboration of distributed software components without hard-
ware, operating system and programming language boundaries. Only the interfaces
and the communication semantic is defined by the OMG. There is no prescribed imple-
mentation. On top of the CORBA definition, services and facilities [ACG97] are defined.

There exists a large variety of CORBA implementations for several object-oriented
languages. In the following, we discuss the CORBA concept by looking at TAO [TAO97],
which is a freely available ORB implementation using the ACE framework library
[Sch94].

The OMA defines two basic models [OMG96]:

① Object model: It describes distributed objects independent of a programming lan-
guage, although the representation has a strong C++ flavor. An object is defined
to be a closed, uniquely and invariably named entity. The provided services can
only be accessed by uniquely defined interfaces. A client can send a request to
an object to have the advertised service performed for him. The implementation
and location of the server is not known to the client. The role of client and server is
defined by the execution of the request. A server can act as a client to other objects.

② Reference model: It describes the way in which the participating objects commu-
nicate with each other and with the services and facilities of the system.

Object Request Broker (ORB): The ORB is the central functional entity of
CORBA. It provides the communication mechanism for the participating objects
and controls their life-cycle and configuration. In colloquial language it is there-
fore often identified with CORBA. The components of an ORB are (� figure 1.5):

✦ ORB Core : This is the central transport channel between client and server
objects. As all clients connect to it, the location, the implementation, the state
and the communication routines of any server are transparent to a client.

1.3 Distributed object-oriented systems 35

Dynamic
Skeleton
Interface

Static
IDL
Skeletons

ORB
Interface

Static
IDL
Stubs

Dynamic
Invocation
Interface

Interface
Repository

Implemen-
tation
Repository

Client-side Implementation Server-side Implementation

Client Object Server Object

Object Request Broker Core

Object Adapter

Figure 1.5: Architecture of the ORB according to the CORBA specification version 2.0.

✦ Interface Definition Language (IDL) : It is a purely declarative language for
describing the interfaces of the participating objects. It is independent of pro-
gramming languages and their data structures.

✦ Language Mapping : Predefined rules for mapping the IDL definitions to in-
terfaces of higher level programming languages. The mapping is performed
by the IDL compiler.

✦ Stubs and Skeletons : They are created in some specific programming lan-
guage by the IDL compiler. Client–side stubs implement the creation and
sending of requests, while server–side skeletons are for receiving the data
and performing a method call on the server object. Together, they implement
a synchronous server invocation with transfer of parameters and result data
(marshaling). Server methods, that do not throw exceptions and do not re-
turn a result, can be declared to be oneway in the IDL language. Software
manufacturers of an ORB are free to allow asynchronous communication for
these requests.

✦ Interface Repository : A database for runtime type information for the server
interfaces created by the IDL compiler.

✦ Dynamic Invocation and Dynamic Skeleton Interface (DII / DSI) : When ex-

36 Coarse strategies

ecuting requests, whose signatures are created by the client at runtime (dy-
namic dispatch), the static stubs and skeleton interfaces can not be used. The
DII and DSI interface allow the execution of such requests.

✦ Object Adapter : It is the connection between a server implementation and
the ORB. It registers the server object with the ORB upon startup, creates
references to the method implementations, instantiates objects upon request,
identifies routed requests (de-multiplexing) and executes the method called
by the request.
The OMG has defined two basic object adapter types: the Basic Object
Adapter (BOA) and the Portable Object Adapter (POA) . The POA has much
more functionality and is discussed in detail in section 1.3.4.

✦ Inter–ORB Protocol : The General Inter–ORB Protocol (GIOP) defines the in-
terface for collaboration of ORBs. The Interoperable Object References (IOR)
format defines standardized messages for communication of ORBs of differ-
ent manufacturers over abstract channels. For example, the Internet Inter–
ORB Protocol (IIOP) implements using the GIOP over a TCP/IP network.

Object Services: The OMG has defined in the Common Object Services Specifi-
cation (COSS) [OMG95b] several system-related, horizontally oriented, universal
services. They are realized as a module with an IDL interface and are therefore
seamlessly integrated. The most important ones are Life Cycle Service, Persistence
Service, Naming Service, Event Service, Transaction Service and Trader Service.

G
page 145

Common Facilities: Like the object services, the facilities are defined as modules
with IDL interfaces [OMG95a]. Unlike them, they do not exist on the system level,
but are directly used by the programmer. The most important facility is the System
Management Facility [OMG95c], that offers configuration, runtime management
and monitoring.

Domain Interfaces: They declare components and interfaces that are optimized
for specialized application areas (medicine, telecommunication,. . .).

Application Interfaces: They are the interfaces of the new application, formulated
as IDL interfaces. Of course, they are not standardized by the OMG.

1.3.3 TAO

The ACE ORB (TAO) [TAO97] is an implementation of a CORBA ORB using the ACE
framework. TAO extends the CORBA specification with domain interfaces for real–time
applications . In the area of telecommunication, system control and WWW, applications
are inherently distributed. Using existing middleware, like standard CORBA, however
fails to deliver the vital Quality–of–Service (QoS) paradigm. TAO offers an integrated
solution by providing

1.3 Distributed object-oriented systems 37

➟ specification of a QoS

➟ enforcing and controlling the QoS

➟ support for creation and application of real–time functionality

➟ allowing non–portable optimizations for special cases

Figure 1.6 shows on the left side the general approach of the TAO ORB when build-
ing a connection: Beside the actual data link for the CORBA services, the client and the
server negotiate the QoS definitions.

Figure 1.6: The TAO architecture — current status. Figure taken from [TAO98]

TAO handles the definition of attributes of a connection within a Connection Strat-
egy . It comprises

Facts
➟ Transfer of execution priority between the implementations of client and server

(end–to–end). The priority classes of several computer operating systems are
mapped into a portable scheme. Clients can bequest their priority, servers can pre-
scribe the usage of a priority class for access.

➟ Connection properties, for example the TCP/IP protocol, can be selected and con-
figured. The GIOP can be configured using preferences.

38 Coarse strategies

➟ Management of parallel routines (thread–pool) is supported. Threads can be pre-
allocated and configured (stack size, priority, static data, maximum number of
threads), on the ORB level and on the object adapter level (� section 1.3.4).

➟ Explicit binding of implementations by early establishment of priority–driven or
dedicated connections is possible according to the capabilities of the selected com-
munication protocol.

➟ Protection against reentrant execution (mutex) in a portable way to eliminate race
conditions of synchronization mechanisms in the ORB and the actual application.

1.3.4 The POA object adapter

The Object Adapter is the main part of the server side of CORBA. It creates references
for all of the registered objects, activates and removes implementations of the objects,
assigns requests (de-multiplexing) and creates the connection between the IDL skele-
tons and the ORB.

The OMG has specified two adapter types by now: the Basic Object Adapter (BOA)
and the Portable Object Adapter (POA) . The POA allows to create server implementa-
tions that are portable between different ORB implementations, which was the major
drawback of its predecessor, the BOA. Because the OMG has also redefined some other
details, the two adapters are incompatible. The BOA has therefore been dropped in the
CORBA specification version 2.1.

The most important design aspects of the POA are

Facts ➟ Portability: The POA enables the usage of server implementations with ORBs of
different manufacturers.

➟ Persistence: The POA supports persistent objects by ensuring that the object gets
the same identity if it advertises a service that exceeds its lifetime.

➟ Automation: Objects are invoked transparently, i.e. the implicit usage of an object
reference triggers the activation of the object.

➟ Saving resources: One can assign multiple identifiers to a CORBA object. This
can result in significant memory saving, if for example a database is modeled by
declaring every record as a CORBA object.

➟ Flexibility: The POA can be configured freely. The identity of objects, the object
state, the request processing (event–handling) and the existence of objects can be
handled automatically by the POA or explicitly by the server class.

➟ Behavior control (policy): The handling of objects and requests (multi–threading,
retention, lifespan, . . .) can be specified upon creation of the POA.

1.3 Distributed object-oriented systems 39

➟ Hierarchy: One server can host multiple POAs as an adapter hierarchy. Each
adapter provides a name space for contained objects and adapters. It implements
recursive functions, for example deep copy, recursive delete . . .

➟ SSI / DSI Integration: Server implementations can be derived both from static
skeletons and DSI, transparently for the client. Two clients with identical interface
therefore can choose freely which server interface to use. This also applies in tem-
poral context: A client can use the static interface first and later switch to accessing
the server by the DSI.

Figure 1.7: Using the Portable Object Adapter. Figure taken from [PS98].

Figure 1.7 shows the architecture and the typical usage of the POA. The abstraction
the POA builds is visible only to the server. Client requests must be routed correctly
to the server implementation. On the right side of figure 1.6, the de-multiplexing tech-
niques of the BOA (A) and (B) are contrasted to the active de-multiplexing (C) of the
POA. It enables a more efficient mapping of server functionality for real–time purposes.
The encapsulation of different parts of the server implementation is reflected by the
adapter hierarchy. The RootPOA exists in every ORB and can be queried by the server
implementation. Object identifiers with the selected retention–policy are stored in the
Active Object Table of the derived POAs. The POA Manager controls the life-cycle of
the POAs.

40 Coarse strategies

1.4 Discussion

Both the message passing concept and the object oriented concepts have different
strengths and weaknesses. The following table 1.1 does not try to argue in favor or
against one of the concepts, but rather presents a collection of typical questions that
must be taken into account when planning parallel and distributed applications or li-
braries.

The bottom line of this chapter is, that choosing the coarse distribution strategy has a
large impact on the overall library and application design. The pros and cons therefore
have to be evaluated very carefully keeping the primary constraints the application has
to meet in mind. Because of its normative character, coarse distribution and paralleliza-
tion strategies get deeply embedded in the application logic, which means that they
cannot be removed from or introduced to existing code easily. The coarse distribution
and parallelization strategy that is used therefore must be among the first considera-
tions a developer of a library or a program has to decide upon.

As nowadays large computation facilities, be it supercomputers or PC clusters, offer
several levels of parallelization, the coarse distribution strategies have to be comple-
mented with finer grained concepts to efficiently use the available resources. The coarse
concepts are therefore often applied to the topmost hardware architecture layer, like
node interconnects or high-speed LANs. For the application developer, it is therefore
important, that the coarse distribution strategy chosen does not interfere with paral-
lelization concepts on a finer level.

In the following chapter, we present strategies for efficient exploitation of parallel
resources. They can be perfectly embedded with the coarse strategies presented in this
chapter.

1.4 Discussion 41

PVM MPI CORBA
Programming model One master process,

any number of slave
processes.

Fixed number of
processes.

Not process based.

Library binding Compile time Compile time Runtime
Data volume per
message

Max. transfer buffer
size

Max. data struct size Streaming possible

Programming
language

All (nearly) All (nearly) Object-oriented only

Asynchronous transfer No Yes Yes
Data types Pack/Unpack calls for

only a few basic types.
Mixing of types in
buffer possible.

Calls for all basic
types. Self defined
struct types possible.
Buffer must have a
single type.

No type restriction,
including recursive
structs and arrays.

Optimized transport No Shortcuts for special
cases, broadcast and
integrated
computation
functions.

Hints for transport
direction.

Persistent state No No Several facilities and
services.

Dynamic server
binding

No. Single program. Yes, within compiling
single project, but not
interoperable.

Yes, also across
projects, only interface
declarations needed.

Communication scope Always full domain. Configurable
subdomains
(communicators).

Does not apply. Server
location not known to
clients.

Bridgeable distance Local
cluster/machine.

Local
cluster/machine.

Any distance.
Gateway server for
inter-LAN
communication
available.

Development effort Programming of
message transfer.
Writing of explicit
code. Linking of
library.

Exact programming of
every message
transfer. Writing of
explicit code. Linking
of library.

Writing of interface
declaration. Code
generation by IDL
compiler. Linking of
library.

Mixed programming
language

No Yes Yes

Process migration Possible by explicit
intervention of master
process.

No Yes, also external
steering through ORB
service.

Table 1.1: This table compares several aspects of coarse distribution and parallelization
concepts that must be considered when planning libraries or programs.

42 Coarse strategies

2
INTERMEDIATE STRATEGIES

Programming is understanding.

— Kirsten Nygaard

2.1 Introduction

In the last chapter, several coarse distribution and parallelization strategies have been
presented. They all have in common, that they handle the communication between
threads or processes explicitly. This promotes a good understanding of when and how
message transfer occurs during program lifetime. Because of their dedication to bridg-
ing large address space distances, the preferred application scope are coarse distribution
tasks on the top architectural level. This makes them inefficient for more closely cou-
pled communication tasks, like they occur regularly in shared memory environments.
Therefore, they must be complemented with intermediate distribution and paralleliza-
tion strategies.

As already pointed out in the introduction to this part of the thesis, there exist a num-
ber of large scale multi-processor machines that support the shared memory program-
ming paradigm, although the memory is not local to all processors. With considerable
hardware expenditure, this is achieved transparently for the programmer on ccNUMA
machines. On NORMA architectures, (system) software can make the memory appear
to the programmer as one shared address space. They are called virtual NUMA sys-
tems, or distributed shared memory (DSM) systems. Memory access is handled trans-
parently by the DSM software and therefore allows to use the simple NUMA program-
ming model on less expensive NORMA architecture hardware.

Initial DSM approaches were based on copying the memory page accessed by the
program to local memory. Although this is a very cheap operation, it suffers tremen-
dously from the false sharing effect : If two data objects are located on the same memory
page, but are accessed by different processors, the page is permanently relocated. This

44 Intermediate strategies

effect is getting more severe, as the memory page size tends to grow rapidly in modern
systems to enable nowadays huge main memory sizes. Additionally, most operating
systems do not allow the user to prescribe a specific memory page for data storage, so
the effect cannot be controlled by the programmer. Modern DSM approaches allow to
control the memory sharing on a data–oriented basis, where the data entities may be
smaller than the memory page size. They do not build on the memory management
hardware, but introduce memory access routines transparently and directly into the
program by using a specialized compiler. The most prominent DSM systems are the vir-
tual Orca machine [BK93] on the CM-5 architecture and the Shasta system [SGT96] for
DEC Alpha clusters.

Altogether, intermediate distribution and parallelization strategies always try to pro-
vide a simpler view of the whole system for the programmer. The shared memory pro-
gramming and communication model and a virtual multi-processor environment en-
able easy functional–parallel or data–parallel programming. In the following sections,
we therefore present two strategies that have proven to be useful for many tasks.

2.2 Pipelining

Virtually every algorithm is composed of distinct processing steps that have to be car-
ried out in sequence. Most often, the steps only communicate via intermediate result
data. If an algorithm can be decomposed to satisfy this criterion and has to be applied
to a large number of input data, pipelining it should be considered.

A pipeline is a concatenation of functionally independent processing modules. It is
therefore also referred to as functional decomposition of an algorithm. Each module
takes a certain data format as input and produces some result. In order to make the
pipeline work, the output format of a module must match the input format of the fol-
lowing processing step. The crucial difference between a modularized program and a
pipeline is, that each step of the pipeline can be implemented and run separately, i.e.
one pipeline step does not use resources of another one.

evaluator rasterization

display list

framebuffer

color sum
fog

texture
memory

switch pipelineper-vertex ops
primitive
assembly

pixel
operations

texture
fetching

texture
application

nVIDIA register combiners

Figure 2.1: The nVIDIA OpenGL processing pipeline.

2.3 OpenMP multi-threading 45

The usual way to drive a pipeline is to run it in synchronous mode. That is, all
pipeline steps exchange data at the same rate. The pipeline therefore produces output
data in every pipeline clock cycle. As this property is very attractive for hardware de-
sign, the pipeline concept is the classic approach for composing complex circuits. As the
input is fed into the pipeline at the same rate as the internal data exchange, the first N
cycles produce illegal output data, where N is the number of pipeline steps. In order
to flush the pipeline, N dummy pieces of data have to be appended to the actual input
data. Figure 2.1 shows the OpenGL processing pipeline on nVIDIA graphics boards as
an example: For the texturing and shading step, there are two implementations that can
be switched by the user. For the input data (the scene graph) and the output data (the
pixels), this is transparent.

The pipeline concept is also often used in pure software implementations. Here, the
pipeline steps need not to be run synchronously, as exchanging the intermediate data
is done by transmission concepts that enforce a synchronization, like shared memory
areas, callbacks or simple shell pipes. Decomposing an algorithm into pipeline steps
can be nevertheless sensible, because of the abstraction and modularization introduced.
The biggest benefit however is the possibility for parallelization and distribution. Be-
cause the pipeline steps have well defined interfaces and have private resource man-
agement, functional-parallel distribution is very easy. The most important point how-
ever remains valid also for software pipelines: The pipeline concept only makes sense
for large amounts of input data of the same type.

One crucial point of creating pipelined processing in software is, to ensure that the
pipeline steps are really executing independently. Otherwise most of the benefits will
be void. If the creation of independent processes is not viable, multi-threading can be
a good alternative. In any case, direct access routines that make assumptions about in-
ternal state of another pipeline step must be avoided. Although extending a more or
less modularized program to a pipeline processing environment can be tedious, the
advantages are significant. In table 2.1 we compare modular program design with the
pipelining strategy.

2.3 OpenMP multi-threading

The most effective strategy to achieve a good speedup for data-parallel tasks on shared
memory systems is multi-threading. The OpenMP [OMP02] standard supports this
strategy by defining several functions for running and controlling parallel threads and
for dividing up the work. Although there also exist OpenMP implementations that can

G
page 145

work in a distributed memory context, the original idea was to enable highly efficient
multi-threading. OpenMP also has library functions that let the participating threads
identify themselves.

OpenMP is a directive-based parallelization strategy. The directives are stated as
compiler pragmas. This means, that OpenMP needs to be supported by the compiler.

46 Intermediate strategies

Fortunately, the OpenMP standard is already well established and many compilers sup-
port it for a wide range of platforms. The OpenMP directives structure the program
into parts that are executed in a certain fashion. As this procedure does not introduce
new code fragments, the program can still be compiled without change using compil-
ers not capable of OpenMP: They will simply ignore the unknown pragmas. The stan-
dard makes sure that this is true for all OpenMP pragmas. Library functions can be
excluded from compilation by using the preprocessor macro OPENMP that is declared
in the OpenMP header file.

Each OpenMP-enabled program starts off single-threaded like any serial program.
This continues to be so until a program part is reached that is marked as parallel. Using
the C/C++ programming language, the part is simply identified by writing the corre-
sponding OpenMP pragma in front of a structured block for which it should be valid.
Upon entering a parallel part, OpenMP executes the code simultaneously on all partic-
ipating threads. The number of threads is defined by an environment variable. When
leaving the parallel part, the program returns to serial execution. An implicit synchro-
nization is performed at this point, so the serial execution starts after all threads have
completed.

double pi = 0.0;
double w = 1.0 / n;

#pragma omp parallel private(x,sum)
{
double sum = 0.0;

#pragma omp for
for (int i=1; i<n; ++i) {

double x = w * (i - 0.5);
sum = sum + f(x);

}

#pragma omp critical
pi = pi + w * sum;

}

Listing 2.1: A multi-threaded program that uses OpenMP directives.

Within a parallel part, program variables can be private to a thread or can be shared
between all threads. The rule here is simple: All variables in the static extent of the par-
allel part are shared, variables in dynamic extent and variables of subroutine calls are
private to the thread creating them. The static extent is simply the lexically enclosed
region of the parallel part. For accessing shared variables by multiple threads, synchro-
nization mechanisms are available.

2.4 Discussion 47

Listing 2.1 shows a small OpenMP-enabled program. Note that the compiler prag-
mas do not change the program logic, so translation using a non-OpenMP compiler is
possible without changes. The program first declared two variables. As this is done be-
fore entering the omp parallel part, the variables will be shared. Inside the parallel
part, the statement omp privatedeclares the variables x and sum to be thread-private.
They act as temporary variables for each thread that can be accessed without need for
synchronization. The #pragma omp for finally divides up the work the loop has to
do in a way, that each thread gets assigned some of the iterations to perform. There are
several scheduling strategies that can be used. The default is to do a static partitioning,
so thread t � 1 . . . N will perform iterations 0

�
i � t � n

N , thread t � 1 will perform iter-
ations

�
t � 1 ��� n

N
�

i � t � n
N , and so on, with N being the number of participating threads.

Finally, the result is accumulated in the variable pi. As this variable is shared among all
threads, the #pragma omp critical ensures, that only one thread enters this region
at a time.

OpenMP has a number of additional features that help the programmer with com-
mon parallelization problems. Here is a short overview:

Facts➟ work distribution for loops with fixed number of iterations (for loops with com-
putable terminator) and for independent serial sections of a program.

➟ reduction of thread-private data to a shared variable with implicit synchroniza-
tion. The reduction operation can be specified for each variable separately (+, *,
AND, OR, MAX, MIN, . . .).

➟ scheduling for work distribution can be static, dynamic (round-robin) or deferred
until runtime.

➟ explicit synchronization as barrier function or single/master blocking. The latter
will halt all threads except a designated one that executes the marked part. When
the part is complete, all threads resume.

➟ library routines that allow to retrieve the number of participating threads, the
number of processors available, the thread’s own identifier, whether code is cur-
rently executed in parallel and adjusting the number of participating threads dy-
namically.

2.4 Discussion

Intermediate distribution and parallelization strategies complement the coarse strate-
gies with concepts for efficient work sharing. This strongly suggests using them es-
pecially for the shared memory model. As modern supercomputer architectures offer

48 Intermediate strategies

distributed memory on multi-processor nodes, the intermediate strategies are most use-
ful for fast intra-node communication. DSM systems and distributed memory OpenMP
versions allow to use the code seamlessly on several other architectures.

In order to help the programmer to make up his mind when designing a parallel
program, table 2.1 compares modularized program design to the pipeline concept. As
with the coarse strategies discussed in section 1.4, the counter-value of using the one or
the other concept varies considerably with the concrete application.

PRO—CON

program modules pipeline steps
Parallel execution Dangerous. Methods and functions

must be reentrant or have to be
synchronized explicitly by separate
locking mechanisms.

Simple. Pipeline steps do not share
resources.

Data exchange Simple. The successor module
reuses data structures built by its
predecessor.

More elaborate. If implementations
of the pipeline steps are not
developed together, the data format
of the intermediate results must be
available at compile time and
plausibility checking must be
performed by each step.

Efficiency Very good. No overhead. Good. Bandwidth of data transport
channels must match data
production rate of pipeline steps.

Flexibility Good. Modularization promotes
code reuse, but enforces adherence
to internal structures.

Very good. Data exchange format is
often very simple. Steps can even be
exchanged at runtime. Internals of
one step are transparent (pure
software or hardware accelerated).

Scalability Poor. Parallelization and
distribution has to be programmed
explicitly.

Good. As the steps are independent,
parallelization through replication is
easy. Flow control steps
(“multiplexer”) are simple to
program and can be generic.

Distribution Not difficult, but requires
intervention into program logic.
Functionality for data transport is
mixed with computation
functionality.

Easy. Data transport is kept external
to computation steps. Standard
stream based data transport can be
used. Transport system can be
exchanged without notice to
pipeline steps.

Graceful
degradation

No. Failure leads to about of entire
system.

Yes. Pipeline can be supervised
externally and dead steps can be
restarted without influence to
others.

Table 2.1: This table compares several aspects of modular program design and pipelin-
ing that must be considered with respect to distribution and parallelization.

While using the pipeline strategy for intermediate distribution and parallelization is

2.4 Discussion 49

surely questionable for some application cases, using OpenMP is nearly always superior
to POSIX multi-threading. The following list summarizes the advantages of OpenMP:

✓ The compiler can optimize the handling of thread-private memory.

PRO—CON

✓ There is a tool set for correctness checking, automatic parallelization and tuning.

✓ Parallelization can be incremental without code modifications.

✓ There are OpenMP implementations for distributed memory systems.

✓ Integrated work sharing concepts for loops and independent serial code blocks
with several scheduling options (“don’t invent the wheel anew”).

✓ Integrated platform independent synchronization functionality.

✓ Parallel variable reduction operations.

✓ “Invisible” in source code written for coarse strategies.

✗ Needs OpenMP-capable compiler.

50 Intermediate strategies

3
FINE STRATEGIES

Premature optimization
is the root of all evil.

— Donald E. Knuth

3.1 Introduction

After coarse and intermediate parallelization and distribution strategies have been ap-
plied successfully, one should strive for optimal numerical performance. For many im-
plementations, the observation is that the average rate of floating point operations per
second (FLOPS) that are executed by a program is in most cases below 50% of the the-
oretical peak performance of the processor. This has to do with hardware limitations of
the memory system: For modern processors, it is slower than the processor I/O rate by
order of several magnitudes. Fast, but small local memory (cache) has been introduced
to cope with this. Additionally, modern processors are internally super-scalar pipelines,
that offer SIMD instructions for working in parallel. For good numerical performance,
this reality must be honored and used consequently.

The bad scalability effects of memory access will continue to get worse — the gap be-
tween processor speed, memory bandwidth and memory latency is widening. Sophis-

G
page 145

ticated programming in high level languages like C++ can only provide algorithmically
efficient programs. For numerical performance, hardware features must be honored. Al-
though compilers will learn to make use of special processor instruction sets, they will
always be one step behind current technology. Speaking more aggressively: Tuning C++
code is no excuse for ignoring SIMD processing options.

In this chapter, we also review some hardware features that are essential for interac-
tive computer graphics and present “custom programmable” integrated circuits for gen-
eral use. They all have in common to efficiently take work load off the processor. When
designing interactive applications, it is crucial to employ them as a fine parallelization

52 Fine strategies

and distribution strategy that share the work between them and the main processor. As
they are working independently and asynchronously, communication bandwidth and
latency considerations play an important role in such a design.

3.2 SIMD processing

Modern microprocessors offer special purpose extensions to their standard instruction
set. The most prominent ones are MMX, SSE and SSE2 [Int00] of Intel, 3DNow! and
3DNow!Ext [AMD00] of AMD and AltiVec for SPARC processors [Mot99]. The first ex-
tension that has been proposed was MMX, aiming at accelerating multimedia applica-
tions (bitmap processing). It has instructions for executing up to 4 integer operations
as SIMD at the same time. It is nowadays largely supported by nearly any Intel x86
compatible processor. For floating point SIMD instructions, Intel and AMD created dif-
ferent incompatible instruction sets, SSE and 3DNow!. They have been superceded by
extended versions SSE2 and 3DNow!Ext.

G
page 145

When it comes to numerical performance, modern computer architectures exhibit a
serious bottleneck: Access to main memory. Especially in the PC architecture, processor
speed gains over the last years have exceeded the performance gain of memory chips
by far. The cure is to introduce multiple levels of high speed caches that tend to get big-
ger with every processor generation. The rationale therefore is, that good performance
can only be achieved with algorithms that honor existing caches. Writing cache–aware
algorithms however is a highly complex topic of its own.

0

100

200

300

400

500

600

700

1 10 100 1000 10000 100000

M
FL

O
PS

vector length

3DNow!
C++

Figure 3.1: Performance gain when using the SIMD instructions of modern processors
for in–cache algorithms.

In the context of parallelization strategies, we examine in this section the possibility
of using the processor caches for high numerical performance by using SIMD algo-

3.2 SIMD processing 53

rithms for in–cache data. We use the 3DNow! extension of AMD that offers SIMD float-
ing point instructions. They allow the processor to generate up to four 32-Bit, single-
precision floating point results per clock cycle [AMD02].

The goal of this section is to show the importance of first accelerating the numerical
operations, so that the program becomes purely memory-bound (� figure 3). Then, it
makes sense to alter the algorithmic design of the program in the high level language to
ensure data locality. Attacking the problem on the high level first can give suboptimal
results, because performance measurements will incorporate the cache effects which
will change if SIMD processor instructions are introduced afterwards.

All following experiments were run on an Athlon 800 processor. Figure 3.1 displays
the characteristic curve for memory-bound algorithms. After an initial rise, the perfor-
mance suddenly breaks down as soon as the data does not fit into the cache anymore.
The interesting point however is here, that with using SIMD instructions, the perfor-
mance can nearly be doubled. This is due to less processor instructions that have to be
issued in the SIMD case. In figure 3.1, we simply add two vectors of varying length.

0
100
200
300
400
500
600
700
800
900

1000

1 10 100 1000 10000 100000

M
FL

O
PS

vector length

3DNow!
C++

Figure 3.2: Using SIMD instructions to compute the dot product of two vectors.

One drawback of the SIMD approach is, that most high level compilers currently do
not support the extended instructions sets for 3DNow! or SSE. Therefore, efficient use
of SIMD instructions is only granted when programming in assembly language. Fortu-
nately, the operations for which SIMD instructions can be used with reasonable effort,
occur only in very small parts of the program. Writing these parts in assembly language
usually results in very few lines of code. When these code blocks are wrapped within
inline C++ class methods, the SIMD performance can be accessed very conveniently
and efficiently. The code in listing 3.1 is an example of this approach: It computes the
dot product (scalar product) of two vectors of arbitrary length by employing 3DNow!
instructions, whose mnemonic is prefixed with pf. The basic idea for getting maximum
performance is, to process the vector components in groups of four values using the

54 Fine strategies

SIMD registers %%mm0 to %%mm5. If the length of the vectors (traced in the %%ecx regis-
ter) is less than four, process them in groups of two. If it is less than two, do it separately.
Pointers to the two vectors are kept in the %%eax and %%edi register. After each step,
the intermediate results are summed up and the final result is returned in the %%edx
register.

Figure 3.2 shows the performance of the code in listing 3.1 for two vectors of vary-
ing length. Obviously, both the C++ version and the 3DNow! version now give better
performance than in the first experiment. This is because the add operation of the first
experiment was just too simple and the algorithm therefore was still memory-bound.
This shows the importance of careful loop design, if maximum performance is a critical
point. Using SIMD instructions therefore is most effective, if the algorithm is computa-
tionally expensive. In figure 3.3 we have performed a component-wise square root com-
putation on vectors of varying length. The FLOPS rates here are an estimation, as the
true number of floating point operations, the sqrt function performs is not known. But
the principle statement remains valid, that when using SIMD, we are able to efficiently
use the cache. The standard C++ version that uses the sqrt math library call is already
slower than accessing main memory and therefore exhibits almost no performance gain
for vectors that fit in the cache.

The SIMD code fragment for the square root computation is even smaller than the
code for the dot product, as 3DNow! offers a pfrsqrt call. The instruction set has
many more efficient SIMD instructions for division, inversion and inverse square root
computation of floating point numbers.

50

100

150

200

250

300

350

400

450

1 10 100 1000 10000 100000

M
FL

O
PS

vector length

3DNow!
C++

Figure 3.3: Using SIMD instructions to compute the component-wise square root of a
vector.

3.3 Custom hardware programming and design 55

The use of SIMD processor instructions is a very valuable fine grained parallelization

PRO—CON

strategy. Here is a short summary:

✓ It can accelerate computationally inexpensive operations like addition, because of
a lower number of processor instructions to be scheduled.

✓ It does not degrade performance if the data does not fit in the cache.

✓ It allows to exploit cache performance for computationally expensive operations
that would otherwise take longer than main memory access time, i.e. it pushes the
limit at which an algorithm becomes memory-bound.

✗ SIMD algorithms have to be programmed in assembly language, if careful control
is necessary or instruction set is not supported by the high level language com-
piler.

3.3 Custom hardware programming and design

For interactive applications, making efficient use of given hardware features is imper-
ative. Desktop computers, like PCs or graphics workstations usually have some hard-
ware devices that perform visualization and rendering related tasks independently of
the processor. The most common device of course is the graphics card that implements a
frame buffer and provides 2D drawing routines in hardware. As these 2D operations are
very simple to implement, they have been there since the introduction of pixel-oriented
CRT displays.

For special tasks, many graphics boards offer advanced 2D operations like motion
compensation for MPEG movies, capture and overlay pixel planes for video display and
editing, or even complete video codecs in hardware. For time-critical tasks like video
and animation, the visual quality usually drops dramatically when the tasks the hard-
ware can perform, are executed on the processor. Interestingly, this is most often not
due to numerical performance problems, but rather because of the data size to handle
or latency issues (dropped frames, bus saturation, interrupts). The observation is, that
nearly all the operations performed are embarrassingly parallel and numerically simple
at the same time. It is therefore clear, that one should strive to do all numerical inten-
sive pre-processing on the CPU and employ hardware support for 2D mass operations
afterwards.

Following this strategy, graphics cards that support drawing 3D objects have been
implemented. They range from complete and expensive hardware implementations of
the OpenGL pipeline on graphics workstations to cheap PC graphics cards, that only
perform texturing and lighting in hardware. The main challenge here is the combinato-
rial explosion of possible rendering modes unlike the simple 2D operations. The solu-
tion is to create programmable hardware implementations. For PC graphics cards, this
trend has also enabled to perform some of the geometry handling in hardware.

56 Fine strategies

Input RGB,
Alpha Registers

Input Alpha,
Blue Registers

Input
Mappings

Input
Mappings

A

B

C

D

A op1 B

C op2 D

AB op3 CD

RGB
Function

A

B

C

D

AB

CD

AB op4 CD

Alpha
Function

RGB
Scale/Bias

Alpha
Scale/Bias

Next Combiner’s
RGB Registers

Next Combiner’s
Alpha Registers

RGB
Portion

Alpha
Portion

(a)

Input RGB,
Alpha Registers

Input Alpha,
Blue Registers

Input
Mappings

Input
Mapping

A

B

C

D

AB + (1-A)C + D

RGB
Function

RGB
Portion

Alpha
Portion

RGB
Out

Available
RGB Inputs

Alpha
Out

E

F

EF

Spare0

2nd-ary
Color

Sum

Clamp to [0, 1]

Input
Mappings

Color Sum Unit

Multiplier

(b)

Figure 3.4: The nVIDIA general combiner (a) and the final combiner (b) can be config-
ured for texture operations and fog. Figures taken from [NVb]

Some of the implementations that are discussed in the third part of this thesis em-
ploy the 3D capabilities of nVIDIA PC graphics cards. For improved visualization and
rendering, the register combiners [NVb] have been used. They provide per-pixel oper-
ations that can be assembled from fixed circuit blocks that are invoked once per pixel.
The actual operation each block performs and the interconnect of the blocks can be cus-
tomized by an OpenGL programming extension. It allows sophisticated lighting and
shading without a frame rate penalty. The second nVIDIA extension used is the vertex
shader [NVc]. It gets invoked once for every geometry vertex that is processed. The
shader is specified as a small assembler like program that is compiled and executed on
the graphics card. The small instruction set contains all basic operations that are fre-
quently used in graphics algorithms like addition, multiplication and the dot product.
As the vertex shader has access to geometry coordinates, it can be used for advanced
processing other than lighting calculations.

Recent developments of graphics boards however show a clear tendency towards
custom programmable hardware . The nVIDIA vertex shaders are only a first step. The
possible applications of completely free programmable graphics co-processors are end-
less, ranging from special effects for games to high quality shading and rendering. Cir-
cuits with access to local graphics memory and dedicated arithmetic units would even

G
page 145

allow to implement different rendering methods like ray tracing or global illumination
methods. The results may be used to complement the triangle rasterization or even re-
place it completely.

A very promising approach to inexpensive custom hardware for graphics is to use
field programmable gate arrays (FPGA) . They belong to the group of semi-custom de-

3.3 Custom hardware programming and design 57

sign style programmable integrated circuits, as opposed to full-custom design style
circuits like application specific integrated circuits (ASICs) . The design is called semi-
custom, because the circuit already contains a large amount of fixed logic and switching
parts and possibly multiple layers of interconnects. The personalization of the circuit,
i.e. the programming, is done by uploading a bit-image to a configuration matrix field.
The matrix entries represent a one-to-one mapping of all active parts of the integrated
circuit. By enabling a matrix entry, the connection between the two corresponding parts
is set. In doing so, a program can be built that uses the given active parts. The matrix
can be reconfigured and the circuit therefore can be reprogrammed. Because the circuit
is personalized by the user, the hardware manufacturing costs are very low.

CLB CLB CLB CLB

CLB

CLB

CLBCLBCLB

CLBCLBCLB

switch switch switch

switchswitchswitch

Figure 3.5: Internal layout of CLBs and switches on a Xilinx Virtex FPGA circuit.

The active parts of a FPGA are called configurable logic blocks (CLB) . They usu-
ally implement some very simple logic operation and host multiplexers and intercon-
nect terminals. For building more complex logic functions, several CLBs have to be
connected. The interconnects available on the circuit normally do not allow connect-
ing arbitrary CLBs. They are organized hierarchically and are fragmented in local and
global connects. The FPGA design therefore suffers from slicing. The connection hi-
erarchy varies with the manufacturer. For storing intermediate results, local memory
registers are available on the chip. Specialized I/O registers connect the FPGA to the
outside world via the pins of the chip.

The principal FPGA technology is shown in figure 3.5. This layout is implemented
within the Virtex circuits of Xilinx [Xil01a]. The CLBs are organized as a matrix that is
surrounded by I/O blocks. There are horizontal and vertical busses to connect distant
CLBs. Each CLB has an associated switch for accessing these busses. In addition, each

58 Fine strategies

CLB can contact the adjacent CLBs directly which minimizes the envelope delay. This
allows tight coupling and long range connections as needed by the personalization.

3.4 Discussion

Although the SIMD processing and the FPGA strategy presented in this chapter do not
compete directly, it is instructive to have a comparative look at them. They implement
very different approaches to data processing.

To illustrate this, we implement integer vector addition as an example. Listing 3.2
shows the assembler code of a fictitious machine that can operate on address references:
If the address is not preceeded by a hash mark (#), the memory content at the location
that is stored in the given address is loaded into the accumulator. The setup for the
example code expects the address of the first vector in memory location [0], the address
of the second vector in [1] and the address for the result in [2]. Memory location [3]
holds the loop counter. The FPGA hardware implementation is shown in figure 3.6(a).
It feeds the vector components directly into an adder that emits the result to the third
vector. The addresses of the vector components are generated by a loop counter that is
incremented synchronous with the adder in every clock cycle.

address
counter

result

vector 1 vector 2

adder

(a)

vector 1 result

vector 2

adder

adder

adder

(b)

Figure 3.6: Block diagrams for adding two integer vectors on FPGA hardware.

For a comparison, we assume that the processor has at least a three stage pipeline

G
page 145

(instruction fetching, decoding, executing), caches and an optimal branch prediction
unit so it can execute every instruction in a single clock cycle. For the FPGA hardware,
we assume that memory, adder and counter are on the same chip, so one addition can be
performed per clock cycle. In the following, we neglect pipeline setup and initialization
times.

3.4 Discussion 59

When adding two three-dimensional vectors, the software solution needs 48 clock
cycles, the FPGA hardware only 3. This represents a speedup factor of 16 for the hard-
ware solution. The software can be tuned for fixed vector lengths by manually unrolling
the loop. Then, the software would need 36 clock cycles. For the FPGA hardware, figure
3.6(b) shows that one can do exactly the same by replicating the entire subsystem, so
everything will be done in a single clock cycle. This represents a speedup factor of 36 !
The factor may get smaller if SIMD instructions are available on the CPU.

The example clearly shows the theoretical capabilities of the FPGA technology that
a program can benefit from. But for a fair comment, one has to take into account, that

Facts➟ nowadays processors (ASIC technology !) operate at frequencies that are a factor
of 20 higher than with FPGAs.

➟ we have considered adding integer values. Executing floating point operations in
one clock cycle will produce very deep FPGA logic, which limits the maximum
achievable clock rate. Amortized single clock cycle floating point operations are
no problem for modern CPUs.

➟ we have performed the addition operation. Implementing a multiplier on the
FPGA demands a huge number of logic gates and thus such algorithms are limited
by the available chip surface. For modern CPUs, any basic arithmetic operation is
equally fast.

The overall rationale is, that one has to decide carefully whether to use FPGA tech-
nology. Its biggest drawback however is the lack of availability on consumer machines.
However, when a large number of relatively simple operations on a large amount of
data has to be performed, FPGAs can deliver massively parallel processing facilities
that can outperform the CPU by far for specialized tasks.

60 Fine strategies

pxor %%mm4, %%mm4 // clear registers
pxor %%mm5, %%mm5
sub $4, %%ecx // check if length less than 4
jb mul4_skip

mul4_loop: // do 4 values at a time

movq (%%eax), %%mm0
movq (%%edi), %%mm1
movq 8(%%eax), %%mm2
movq 8(%%edi), %%mm3
add $16, %%eax
add $16, %%edi
pfmul %%mm0, %%mm1
pfmul %%mm2, %%mm3
pfadd %%mm1, %%mm4
pfadd %%mm3, %%mm5
sub $4, %%ecx
jae mul4_loop // check if length greater 4
pfadd %%mm5,%%mm4

mul4_skip:

add $2, %%ecx // check if length greater 2
jae mul2_skip
movq (%%eax), %%mm0 // do 2 values at a time
movq (%%edi), %%mm1
add $8, %%eax
add $8, %%edi
pfmul %%mm0, %%mm1
pfadd %%mm1, %%mm4

mul2_skip:

and $1, %%ecx // anything left ?
jz even
pxor %%mm0, %%mm0 // yes, uneven length
pxor %%mm1, %%mm1
movd (%%eax), %%mm0 // combine results
movd (%%edi), %%mm1
pfmul %%mm0, %%mm1
pfadd %%mm1, %%mm4

even:

pxor %%mm5, %%mm5 // no, even length
pfacc %%mm5, %%mm4
movq %%mm4, (%%edx)

Listing 3.1: x86 assembler routine for computing the dot product using 3DNow! SIMD
instructions.

3.4 Discussion 61

loop: LOAD 0 // ACC = [0]
ADD 1 // ACC = [0] + [1]
STORE 2 // [2] = ACC add vector elements

LOAD #0 // ACC = [0]
ADD #1 // ACC += 1
STORE #0 // [0] = ACC increment address vector 1

LOAD #1 // ACC = [1]
ADD #1 // ACC += 1
STORE #1 // [1] = ACC increment address vector 2

LOAD #2 // ACC = [2]
ADD #1 // ACC += 1
STORE #2 // [2] = ACC increment address result

LOAD #3 // ACC = [3]
SUB #1 // ACC -= 1
STORE #3 // [3] = ACC decrement loop counter

JNZ loop

Listing 3.2: Assembler code for adding two integer vectors.

62 Fine strategies

Part II

Integrating Simulation, Visualization
and Rendering

4
THE gridlib PROJECT

Man muß etwas Neues machen,
um etwas Neues zu sehen.

— Georg Christoph Lichtenberg

4.1 Introduction

The goal of the gridlib project is to develop a modern object-oriented software infra-
structure for common grid-based numerical simulation problems on trans-teraflops ma-
chines. These supercomputers and modern scalable algorithms allow numerical simu-
lations to be performed at unprecedented grid resolutions. However, this also tremen-
dously increases the sizes of the result data sets, surpassing the capabilities of current
pre- and post-processing tools by far. At the same time, pre- and post-processing has
become more and more important. Current complex engineering solutions require the
automatic generation of problem-specific, time-dependent, adaptive, hybrid 3D grids
that can be partitioned for parallel simulation codes. Enormous amounts of data must
be presented visually for easy interpretation.

The system hardware of current supercomputers also places non-trivial demands on

G
page 145

the software architecture, in particular the widening gap between the low bandwidth of
external communication channels and the available size of local memory. This requires
the execution of pre- and post-processing steps on the supercomputer, which is a sig-
nificant problem due to missing generic software support. Other difficulties arise since
only special data and software structures can be efficiently handled on the high perfor-
mance architectures. A naive implementation may lead to unacceptable performance
problems.

The gridlib project addresses these problems. It can act as a middleware between
existing software modules for pre- and post-processing. It furthermore allows for im-
plementing efficient solvers for complex simulation tasks. In this chapter, we present an

66 The gridlib project

architectural overview of the gridlib , describe its current functionality and show some
example applications.

4.2 Overview

The gridlib architecture provides three major abstraction layers (� figure 4.1) [Kip00,
Kip01b]. The lowest one is responsible for encapsulating the actual memory layout of
data. Because the next layers entirely rely on this abstraction, the lowest layer can orga-
nize the storage freely. In particular, it can format its own memory layout to conform to
the memory layout of other third party codes. We can exploit this possibility for using
a binary-only third-party flow solver.

Mesh Container

Flow VertexTetrahedronTriangle

Triangle
Pool

Tetrahedron
Pool

Storage

Elements

of ...

Client

using
abstraction

Topology
Algorithm

Solver

Vertex ElementGeometry Element

Scalar Vertex

Scalar Vertex
Pool

Flow Vertex
Pool

GUI I/O

Figure 4.1: The gridlib provides three major abstraction layers for both integration of
binary-only codes and development of new object-oriented solvers.

The second abstraction layer is the main link to the object-oriented world. It provides
interfaces for all primitive elements (triangles, quadrilaterals, tetrahedra, hexahedra,
prisms, pyramids, octahedra), edges and vertices as regular C++ classes. This sets the
gridlib apart from other grid management libraries, as most of them do not allow the
programmer to actually call methods on these objects.

The topmost layer provides the concept of a mesh container. It does not make any

4.3 Storage abstraction layer 67

assumption on the mesh topology and implements abstract services, like neighborhood
setup, subdivision functionality and management and content iterators.

The mesh container and the element abstraction layer provide powerful object-
oriented programming support. For the library user, the gridlib further implements
several clients that use the three-tier architecture for disk I/O, visualization and simu-
lation. The performance of the interfaces for the data exchange between the grid man-
agement, the solver and the visualization and rendering subsystems has been evaluated
by performing several simulations in the context of the KONWIHR project “gridlib : A
parallel, object-oriented framework for hierarchical-hybrid grid structures in technical
simulation and scientific visualization” [KG01, KHM

�

02].

4.3 Storage abstraction layer

In order to provide abstraction with respect to the memory layout of storage space, the
data of each primitive object type is taken care of by a memory pool . Each pool imple-
ments a specific storage layout. In general, each primitive object type is associated with
a specific memory pool implementation. This does not seem to provide great flexibility,
but it has a number of advantages that are discussed below.

Because of the very concrete nature of each memory pool implementation, there

G
page 145

is need for introduction of an additional concept for achieving all the benefits object-
oriented languages are renowned for. Although all memory pool implementations share
a common functionality, because of the differences in memory layout and for efficient
data packing, using inheritance is prohibitive. However, dealing with many unrelated
object types is very bad programming practice and does not support abstractions, which
in turn is vital for re-usability and maintenance of the code. Section 4.4.1 therefore in-
troduces a design pattern that has been used to solve this problem.

4.3.1 Memory Pools

The gridlib offers a memory management subsystem that is able to store small objects
in a memory pool [Kip00]. Each pool defines a specific storage layout used by a prim-
itive object. The pool functionality can be described in a generic way. The class Gb-
MemPool<T> provides a chunk of memory that can be acquired by a client in arbitrary
granularity. It is put back into the pool for reuse when the client releases the memory
(� figure 4.3). This concept has several advantages and some minor drawbacks:

PRO—CON

✓ Because there is no inheritance and abstraction involved, each pool implementa-
tion is guaranteed to only require storage for its data members.

✓ The absence of a vtbl also ensures that inline instructions are working.

68 The gridlib project

✓ Because GbMemPool<T> only has to manipulate a few pointers for each request,
it is much faster than individual calls to the operator new or the operator delete.

✓ The size of the memory chunks allocated by the pool can be optimized to fit system
properties (int-alignment, page size, . . .).

✓ To the pool’s functionality, the layout of the individual data record to be stored
is of no importance. The pool can therefore be implemented as a template that is
parameterized over the memory layout declaration.

✗ The minimum size of an individual item from which a pool is to be constructed is
the size of a pointer, which is 4 bytes on most systems. The pool concept imple-
mented here therefore does not work for pooling single byte chars.

✗ The pool can only handle objects of the same size.

✗ Deriving from an existing pool declaration makes no sense, because it destroys the
terminal-class property of the pool. For creating several pools in one application,
each pool has to be declared from scratch.

Typical applications of a pool of chars or shorts occur frequently in time-critical al-
gorithms, which have very strict requirements on timing and storage complexity. There
exist a number of highly specialized solutions for this group of problems. The GbMem-
Pool<T> class does not try to break into this domain and concentrates on the more
general parameterized pool concept. Finally, the drawback of not being able to derive
from a memory pool seems to be the most severe. As the memory pool in gridlib is im-
plemented as a template class, deriving from it is not necessary. Nevertheless, handling
all pool instances in a way as if they have a common ancestor is possible by employing
an additional design pattern that is presented in the next section.

4.4 Element abstraction layer

One of the main aspects of the gridlib framework is to provide real object semantics
to the programmer. This includes well defined interfaces for the participating object
groups like vertices, geometry elements and edges. For each group a (pure virtual) in-
terface class is provided along with several derived classes that implement standard
object types, like a triangle. In the previous section, efficient storage of small objects has
been discussed. The developed memory pool concept is now used for implementing the
basic vertex, edge and geometry objects of the gridlib [Kip00, GKLT00].

4.4.1 External Polymorphism

For the implementation of the basic objects, the gridlib uses the concept of external
polymorphism [CS98, GHJV95] to satisfy the demands for abstraction and flexibility. It

4.4 Element abstraction layer 69

is implemented in a subsystem of wrapper classes that link to some appropriate mem-
ory pool. The wrapper classes themselves now being totally decoupled from the storage
layout, can employ every object-oriented pattern possible, and act as proxy interfaces .
In particular, they define inheritance relations of primitive objects by declaring common
pure virtual abstract interfaces. This is the fundamental key to code maintenance and
algorithmic design on higher levels.

id()

::ident � GoScalarVertexBase � (instance)�
instance- � id(); �

delegate

GoVertex

GoScalarVertex � ScalarType �

ScalarType *this
getId()

getId()

GoScalarVertexBase

SignatureAdapter � ScalarType �

Figure 4.2: UML object-model of the external polymorphism design pattern.

Figure 4.2 displays a UML diagram of the external polymorphism pattern. The goal
is to create an inheritance relation for several distinct classes, like the GoScalarVer-
texBase class on the upper right. We may not simply add a pure virtual interface and
derive the classes from it, as they may not have the same interface or direct inheritance
is prohibited because of performance reasons. But as our goal is to have a common inter-
face, we declare a pure virtual one that suits our needs: GoVertex on the upper left. Now
we derive from it one class (GoScalarVertex in our example) for every basic class we
want to reach. The methods of this class simply delegate the work to sufficiently global
signature adapters that are parameterized with the destination class’s type. The signa-
ture adapter now calls the destination method with the correct name and parameters.
Note that the signature adapters are template functions and therefore will be special-
ized by the compiler automatically. The outcome of this procedure is a full inheritance
hierarchy for totally unrelated class implementations.

Here is a short discussion of the external polymorphism design pattern:

PRO—CON
✓ Low overhead: In a conventional class hierarchy, derived classes may inherit an

unnecessarily large interface. For consistent code changes, the source code must
be available: If concrete data types must be extended, their memory layout must
be adapted through virtual pointer tables, which is prohibitive for some libraries
like STL. When using the design pattern, this is not a problem because the memory
layout is delegated to some concrete class.

70 The gridlib project

Flow
Vertex

position
normal
color
density scalar
momentum vector
energy scalar

position
normal
color
density scalar
momentum vector
energy scalar

position
normal
color
density scalar
momentum vector
energy scalar

position
normal
color

position
normal
color

position
normal
color

density scalar

density scalar

density scalar

density scalar

density scalar

energy scalar

energy scalar

energy scalar

energy scalar

energy scalar

Pool A Pool EPool DPool CPool B

momentum vector

momentum vector

momentum vector

momentum vector

momentum vector

Figure 4.3: The storage for primitive objects can be allocated from a single memory
pool (left side) or employ a composition of several pools (right side) according to the
expectations of the solver code.

✓ Universal: Given an object system, in which the participating classes must register
their methods explicitly (via static type coding / brute force casts), every combi-
nation of classes and libraries must be globally encoded manually. This design
pattern in contrast only needs changes to happen in the adapter implementation
which is highly localized code.

✓ Transparent: Classes that don’t collaborate conceptually can be treated polymorph
with respect to the virtual interface. In particular, changes in the virtual interface
do not require changing the original objects.

✓ Flexible: Using a programming language that supports parameterizable types
(templates), even primitive data types like int or float can be treated poly-
morph.

✓ Peripheral: Because the design pattern does not directly interfere with the objects,
it can be entirely removed by conditional compilation, if its functionality is not
useful (debug-only functions).

✗ Unstable: The access adapters and the virtual interface must be changed accord-
ingly, if the interface of the original objects is changed.

✗ Obtrusive: It must be examined carefully, if the code using the design pattern
must use the virtual interface or must call the objects directly. Adding the design
pattern to existing source code can incur large code changes.

4.4 Element abstraction layer 71

✗ Inefficient: The pattern can introduce several levels of virtual method dispatching,
if the original objects are not able to provide inlinemethods, in which case there
is only a single dispatch necessary.

✗ Inconsistent: Because the original objects implement the pseudo-polymorph meth-
ods indirectly but do not declare them directly, the methods are not reachable using
a pointer to the original object.

The gridlib declares abstract interfaces for each logical group of primitive ob-
jects : GoGeometryElement<T> for geometric primitives like triangles or tetrahedra,
GoEdge<T> for edges and GoVertex<T> for nodes. Each primitive object that is de-
rived from these interfaces implements a wrapper for one or more memory pools (�
section 4.3.1). The flexibility of this approach is, that such an implementation can use
any number of memory pools to store its data. In some application, it may be appropri-

G
page 145

ate to put all data into a single pool. If some subsystem implemented in a programming
language like FORTRAN is to be used, it may be more appropriate to employ a distinct
memory pool for each value to be stored. In figure 4.3 two possibilities for implementing
a flow vertex are displayed: On the left side, all data is allocated as a single block from
a memory pool, while on the right side, the data is stored in three specialized memory
pools. This is the exact analogue to the decision of using an array of structs or a struct
of arrays for data storage.

All primitive objects are de-

Client

Interface

Implementation

Position DataState

pure virtual

O
ne

de
re

fe
re

nc
e

polymorph

pseudo–polymorph memory pools

inline

inline

dereference

Figure 4.4: Accessing the pseudo–polymorph mem-
ory pool implementations reduces to a single deref-
erencing operation.

rived from the abstract interfaces
and internally take care of the
link to the memory pool. They
appear to the programmer like
standard C++ objects. This in-
cludes in particular object cre-
ation / destruction and the ob-
ject hierarchy available, enabling
the writing of generic algorithms
that use the parents virtual in-
terface. Appendix C has an over-
view of the inheritance relations
for all core interfaces of the gridlib .

Because inheritance relations
are defined by the wrapper ob-
jects and not within the imple-
mentation of the basic memory
pooling classes, the declaration
of polymorphism is outside of the scope of the pool class’s declaration (� figure 4.2).
This is why the design pattern is called external polymorphism . The wrapper classes
can choose freely how to apply a combination of decorator and substitution pattern

72 The gridlib project

onto this. Because the linked class implementations (the memory pools in our case)
need not be related by inheritance, there is a chance that inlining is working. In fact, as
shown in figure 4.4, with the design of the gridlib this is the case. Consequently, a call
to a virtual method of the wrapper objects requires just a single dereferencing operation
and therefore is as expensive as any virtual method call. In other words, the external
polymorphism pattern does not introduce a run-time penalty compared to conventional
implementations that directly derive objects from a common interface to provide real el-
ement semantics. The gridlib uses this design pattern to decouple the memory layout
from the element abstraction.

4.5 Mesh abstraction layer

As shown in figure 4.1, the uppermost system level provides abstraction of a grid
through a container. It is responsible for encoding topology and geometry of a mesh
by exclusively using the abstract element interfaces below. Therefore, the mesh algo-
rithms work on any given storage layout. The mesh acts as a pure container, which
means that its algorithms may not make any assumption about the implementation of

G
page 145

the elements or the grid topology. The mesh simply acts as a collection of basic elements
(geometry elements, edges, vertices) that form a logical entity in space. A mesh can have
an arbitrary number of levels of subdivision [Kip01a].

The mesh also provides some functionality on the set of elements it contains. Most of
the methods are query methods for topological context or quantitative properties. There
are also some service routines for the convenience of clients. As the mesh layer is the
most important interface to the clients, appendix D lists the provided capabilities.

4.5.1 Algorithmic abstraction

The second important concept of the gridlib is the efficient formulation of algorithms on
the mesh level. The mesh abstraction layer provides algorithmic abstraction to clients.
It allows efficient access to the contained elements and promotes a programming style,
that makes formulating client algorithms very maintainable.

Practically every algorithm dealing with a grid performs forall iterations on its

G
page 145

elements, vertices or edges. The gridlib therefore provides a concept that supports this
particular algorithmic pattern. One can write small code entities, called functor , that
are to be applied to all elements, vertices or edges of the mesh. The mesh has methods
that take any such functor definition, construct the functor and apply it to every con-
tained element, vertex or edge. Because a functor uses the abstract element interfaces
below, one can use the full possibilities of overloading, inheritance and runtime type
information when writing one.

A functor is implemented by overloading the default operator operator() of a
lightweight class. The mesh container provides iterators for executing the functor on

4.5 Mesh abstraction layer 73

every grid element. Note that this concept is very useful for parallelization because of
the clear separation and encapsulation of the working domain of the functor: Depend-
ing on the point in time when a functor is constructed, its private data members reside in
shared or thread-specific memory. The actual algorithm that is formulated as a sequence
of functor applications to the mesh is called skeleton program .

The pseudo-code example in listing 4.1 sets a marker flag for every quadrilateral in
the mesh and calls method foo() on all objects of the mesh. For vertices, the fooSpe-
cial() must be called with a parameter. In terms of object-oriented programming
beauty, the obtained code is of high quality and the interacting code entities are clearly
distinguishable. Here is a short discussion of the concept:

PRO—CON

✓ Flexible: The concept easily handles multiple base classes and objects with differ-
ent method names and signatures.

✓ Robust: If a new object type is derived from the class interface that is the functors
argument, the skeleton program behaves very sensible by using the method with
the parent signature.

✓ Localizing: If, for some reason, the foo() method must perform an additional
task on all or on some specific objects, it is clear where the source code to be mod-
ified is located: MakeFoo::operator(). This tremendously helps the program
maintenance and promotes code reuse.

✓ Understandable: The modularity of the functor usually results in small code
blocks inside the operator(). Additionally, the operator typically has only a
few arguments, making the code block tight and easy to understand, because ir-
relevant pre- and postconditions are not visible.

✓ The big picture: If there is a reasonable functor granularity and little helpers like
m.forAllObjects(), the skeleton program is very clear and easy to under-
stand. All detail is taken care of by the functors implementation. The skeleton
therefore can concentrate on formulating high level algorithms.

✓ Safe: Because of the limited actions a functor performs, the possible negative side-
effects it can produce are minimized. The functor parameterization also enforces
additional type checking on the arguments.

Note that a functor must be “sufficiently” global with respect to the skeleton algo-
rithm. A functor therefore can be private to a specific class, can be inherited and serve a
whole subtree or can be absolutely global to provide for example a conditional delete
call on the abstract top-level interface to remove all marked elements, vertices or edges.
Putting some generally useful functors into the global scope provides powerful sup-
port for code reuse of skeleton algorithms on the mesh level. It is also a good means of
providing library functionality to developers.

74 The gridlib project

Last but not least, the code locality, the clear definition of data storage and data
access and the restricted scope of the operations also helps the optimizer engines of
current C++ compilers to better figure out whether aliasing and dependency relations
prohibit optimization or not.

4.6 Clients

When writing applications that deal with meshes, several tasks occur routinely that are
not trivial to implement, but have at the same time nothing to do with the actual com-
putation. The classic example are input and output routines that must be portable (en-
dianess, file system), fast (possibly parallel) and easy to use. The gridlib provides such
services as library functionality that is implemented as modular subsystems that access
the core grid routines exclusively through the high level interfaces on the mesh and el-
ement level (� figure 4.1). The services are therefore completely independent of any
application specific topics. As all subsystems have well defined interfaces and encap-
sulate the functionality well, each one is provided as a small auxiliary dynamic library.
It needs only to be linked to an application if its functionality is accessed. When imple-
menting a program that uses the core gridlib routines, one can therefore decide freely to
re-implement critical functionality, or use the provided services for rapid development.

4.6.1 Services and Utilities

As all library services access the grid by the high level interfaces, they are considered
to be clients to the gridlib . The actual application then acts as a client to the service.
The services provided by these subsystems are diverse and cover a wide range of top-
ics. With the exception of the visualization and the rendering subsystems, which are
discussed in detail in the next section, the following list gives a short overview of the
implemented functionality, as the gory details are simply off topic of this thesis. Note
however that without this functionality, successful implementation of the applications
presented in the third part of this thesis would not have been possible.

➟ Util: This subsystem provides a collection of little programming tools of gen-
eral usefulness. It is very likely to be used in every application: One- and two-
dimensional Bit arrays, 2-Bit arrays, binary trees, an image class of configurable
color format with converters, a data compression class, a class for querying hard-
ware capabilities, a dynamic storage class for assembling small objects and primi-
tive types, a registry service and debugging helpers.

➟ I/O: Reading and writing meshes and data to disk is needed by every applica-
tion. The I/O subsystem of the gridlib supports several common 2D and 3D mesh
formats. Among them are OpenInventor, NetGen, Alias � Wavefront, OFF, Stanford
polygon format, AVS and GSHHS. The I/O subsystem offers a simple interface,

4.6 Clients 75

so application specific file formats can be integrated seamlessly, and many gridlib
developers have done so. For the library user, the subsystem provides additional
convenience methods, like file type guessing, textual file type naming and textual
representation of the file extension and wildcard, which is very useful for building
file-requester dialog boxes.

➟ GridGen: The gridlib does not implement grid generation routines apart from
simple Delaunay meshing. This subsystem encapsulates an external mesh gener-
ator. The resulting mesh is created as a gridlib mesh container. The actual grid
generator used is therefore transparent to the user. The gridlib currently uses
GRUMMP [OG02] for grid generation. The second important functionality of this
subsystem is to provide methods for transformation of grid representations. Cur-
rently, there is a class for creating a progressive representation of tetrahedral grids
[LKMG01].

➟ Partition: For parallel and distributed applications, partitioning a 3D grid into
pieces in a way such that the number of faces between the partitions is mini-
mized, is an important and non-trivial task. The gridlib provides a subsystem that
uses the ParMETIS [KSK97] graph partitioning library for computing this prop-
erty called “least edge-cut”. The minimization of the number of shared faces is
essential, because it determines the communication volume between partitions of
a distributed program.

➟ GUI: This subsystem provides several pieces for controlling gridlib functional-
ity with a graphical front-end. Because the usefulness of generic implementations
of graphical widgets varies heavily with the application, the subsystem does not
try to offer a complete toolbox. Instead, it provides graphical interfaces that are
built upon OpenInventor and pure OpenGL to show the developer the general ap-
proach to take. For small “viewer-only” applications, complete viewer and control
classes are available through simple linking of the subsystem library. The viewers
employ the functionality of the visualization and the rendering subsystem to dis-
play the grid.

4.6.2 Visualization and Rendering

Many of the distribution and parallelization strategies presented in this thesis have been
evaluated while implementing the visualization and the rendering subsystems of the
gridlib . As with the other client services, they are designed to access the grid through
the high-level interfaces and therefore do not interfere with memory layout or other
solver-related issues.

The rendering subsystem is split into two major parts: An abstract renderer for ge-
ometric primitives and rasterizers. Currently, there are rasterizer implementations for
triangles and lines. There is a pure software rasterizer and a wrapper for OpenGL. Both

76 The gridlib project

have several derived children for special rendering contexts or hardware accelerated
toolkits.

Software Rasterizer OpenGL Rasterizer

Geometric Primitives
Renderer

Special Context
Rasterizers

Special OpenGL
Toolkits

Figure 4.5: The rendering subsystem derives several rasterizers from a well defined in-
terface.

The rendering subsystem is fed by the visualization methods with individual tri-
angles or triangulated meshes. The geometric primitives renderer processes them with
standard computer graphics algorithms for culling and clipping in order to reduce the
number of triangles to rasterize. Its main task is to serialize the triangles into a specific
formatted stream for the rasterizers. This includes computation of vertex attributes like
color (probably from a transfer function mapping) and texture coordinates (including
loading of texture bitmap). The renderer also features portal culling in order to reduce
the overdraw rate of the rasterizers. The geometric primitive renderer is a pure software
implementation and can therefore be used for all rasterizers.

For parallel rendering on a supercomputer, the software rasterizer is used [KG01].

G
page 145

It works similar to OpenGL by using a Z-buffer. Although there is some CPU-cycle
penalty for the overdraw, this technique allows to implement the scanline code to treat
the Z-component similar to other scanline attributes like color and texture. This gives
longer code sequences without branches and therefore better optimization possibilities
for the compiler. The most appealing aspect of the Z-buffer technique however is, that
the rasterizer can be kept quite simple to implement. It finally provides a framebuffer
and the Z-buffer to derived children which are left with implementing the transport
of the framebuffer content on screen or into an image file. The rendering subsystem
provides a distributed version of the framebuffer for NORMA architectures (� intro-
duction to part one).

The visualization subsystem features several algorithms for displaying the simula-
tion results. Again, as the data extraction is done on the mesh level, the algorithms are
independent of the actual memory layout. Table 4.1 displays a short summary of the
available visualization capabilities (� color plate B.1). All methods work directly on
the unstructured mixed element-type grid and can be applied simultaneously by the
viewers.

4.6 Clients 77

class GeoObject { // first some declarations
public:
virtual void foo() = 0;

}

class Quad : public GeoObject {
public:
virtual void foo() { ...; }
void setQuadMarker() { ...; }

}

class Tri : public GeoObject {
public:
virtual void foo() { ...; }

}

class Vertex {
public:
virtual void fooSpecial(int i) { ...; }

}

struct MarkQuads { // now the two functors
void operator()(GeoObject *o) {

Quad *q = dynamic_cast<Quad*>(o);
if (q) q->setQuadMarker();

}
void operator()(Vertex *v) {}

}

struct MakeFoo {
MakeFoo(int i) : i_(i) {}
void operator()(GeoObject *o) {

o->foo();
}
void operator()(Vertex *v) {

v->fooSpecial(i_);
}

private:
int i_;

}

Mesh m; // now the skeleton program
m.forAllObjects(MarkQuads());
m.forAllObjects(MakeFoo(1));

Listing 4.1: The gridlib employs the functor concept for algorithmic abstraction on the
mesh level.

78 The gridlib project

Planar slices. Scalar values can be mapped onto the
slice using a color table. The table can be modified
interactively.

Contour lines on a planar slice. The lines are gener-
ated as true geometry and therefore display in cor-
rect perspective. The iso-value of a line is annotated.

Direct volume rendering by regular resampling. The
voxel volume can be rendered with hardware sup-
port. Interactive color table mapping and gradient
shading for visualization of tiny structures and iso-
surfaces is available.

Isosurfaces of any scalar value. The surface can be
shaded for good spacial impression or another scalar
value can be mapped onto it using an interactive
color table.

Table 4.1: The gridlib offers several visualization algorithms for displaying simulation
results.

5
gridlib APPLICATIONS

Ce qui est simple, n’est pas vrai,
ce qui ne l’est pas, est inuntilisable.

— Paul Valéry, Mauvaises pensées

The gridlib has been used for several simulation and visualization applications. Al-
though most of them have not been designed as parallel distributed applications or for
the use on a supercomputer, they have triggered and brought forward the development
of visualization functionality in gridlib considerably [HKRG02, DHH

�

00a, DHH
�

00b].

5.1 Evaluating the quality of tetrahedral grids

Generating and modifying tetrahedral grids
is an important topic for finite element simula-
tions and geometric modeling. Both require well
shaped elements. However, the definition of “well
shaped” heavily depends on the application. For
geometric modeling, the tetrahedra should be
“round”, i.e. all edges have the same length. For
simulation, the elements should be elongated per-
pendicular to the flow direction for minimal error.
In [LKG00], visualization of tetrahedra quality has
been implemented (� color plate B.9). The gridlib
serves as grid management and algorithmic ab-
straction library for the quality evaluation routine.

80 gridlib applications

5.2 Progressive isosurfaces from tetrahedral grids

For visualizing large datasets, progressive tech-
niques have proven to be of great value, as the user
can interact with a continously refining grid repre-
sentation while the dataset is still in transmission.
This technique has been applied to tetrahedral grids.
In [LKMG01], an application has been implemented
that also performs isosurface visualization during
transmission of the tetrahedral grid. As the grid gets
refined, the isosurface is also updated accordingly.
This can be done locally, so only updated parts of
the surface are exchanged. The gridlib is used as a
grid management and visualization library (� color
plates B.10 and B.7).

5.3 Fast time-dependent isosurfaces

One of the classic visualization algorithms for
scalar data are isosurfaces. For unstructured grids,
they are generated with variants of the march-
ing cubes algorithm. In [Sch01b], a fast isosurface
generation for mixed element-type unstructured
grids has been implemented that pre-processes the
grid once by sorting the elements according to the
scalar values. When traversing the grid, interest-
ing elements that contain the isosurface can be
quickly identified by a tree-structure lookup. The
gridlib has been used as general grid management
library and for viewing the result. Using the mesh

interface of the gridlib , it has been possible to perform the isosurface extraction on a
time series of the simulation (� color plate B.11) to obtain a time-dependent isosurface
animation.

5.4 Visualization across partitions 81

5.4 Visualization across partitions

For studying simulation results, the gridlib is used
for visualization of multi-domain data. The visu-
alization algorithm is run across partition bound-
aries (� color plate B.11). Because the gridlib vi-
sualization and rendering algorithms are available
on the simulation machine, intermediate results can
be visualized and the solver can be stopped early
if it starts to diverge because of bad parameters or
boundary conditions. This can save a lot of CPU
time.

5.5 Mesh registration

When assembling larger objects from grid frag-
ments, automatic positioning of mesh pieces is re-
quired. Here, the vertices of one piece are regis-
tered to the surface of another mesh. The gridlib
GUI subsystem is used for interactive positioning
of the pieces, controlling the optimization process
and viewing the result. The grid management and
numeric services are used for implementing the
registration algorithm.

82 gridlib applications

Part III

Applied Parallelization and
Distribution

6
SIMULATION

The reason that data structures and algorithms
can work together seamlessly is . . . that they

do not know anything about each other.

— Alex Stepanov

6.1 SIMD processing for Lattice Boltzmann methods

The CFD community has developed several methods for simulating flows. They can be
subdivided in finite element approaches and fast fluid simulation methods based on
statistical physics that are summarized as Lattice Boltzmann methods [WG00, LL00].
While the former methods compute the flow properties on a possibly unstructured con-
crete geometry grid, the latter methods use probabilistic approaches on an implicit reg-
ular discretization of the domain. In this section, a parallelization strategy using SIMD
instructions for Lattice Boltzmann methods is presented.

6.1.1 Lattice gas

The flow properties of a homogenous gas are described by continuum mechanic de-
scriptions from physics research. Numerical simulation of such systems however is
very complicated and must take analytic approaches. Apart from algorithmic complex-
ity, good parallel performance cannot be achieved easily, as analytic algorithms usually
don’t scale well.

For high performance simulation, a good discretization of the domain must be
found. From statistical physics, descriptions of gases using discrete particles are known
(� figure 6.1). The particles have different masses, continuous momentum and exhibit
random movement and interaction.

The lattice gas method constructs a simulation model from these properties by using

86 Simulation

homogenous fluid discrete particle gas lattice gas

p, �u, ν, ρ m, �u, ω r, u, t

Figure 6.1: From a physical description of a fluid to the lattice gas representation.

unit mass particles with discrete momentum. The movement is realized as an iterative
advection using discrete time steps. Because of the lattice structure, particle interaction
and collision rules that conserve mass and momentum are simple to implement. The
same applies to boundary conditions for discontinuities or walls. The boundary geom-
etry may be complex as it is defined easily by marking the intersected lattice cells to
apply a simple “bounce back” rule for particle propagation.

The particles in the lattice can be encoded very efficiently as integer values. The
macroscopic values of the continuous gas description can be retrieved from the lattice
gas by ensemble averaging of the particle distribution: By considering a small local
subset of the lattice cells, the density ρ � ∑ particles

�
∑ cells and the momentums vx, vy

are computed by simply counting the respective particle properties. For the particles in
figure 6.1, vx ��� 1 � 0 � 1 � 1 � 1 � � ρ and vy ����� 1 � 1 � 0 � 0 � 1 � � ρ.

6.1.2 Lattice Boltzmann

The lattice gas method can be implemented very efficiently. Because all calculations are
local, parallelization is easy. However, it needs big lattices for good ensemble averaging
precision, long averaging times to suppress statistical noise and the flow’s parameters
are rather difficult to control.

The basic idea of the Lattice Boltzmann method is, to circumvent these drawbacks
by representing the particle momentum and location as a particle distribution function
Ni instead of single particles (� figure 6.2).

The advection and boundary rules are the same as with the lattice gas method.
The particles however need now to be represented by multiple floating point par-
ticle densities for each lattice cell. Implementation of particle interaction is feasible
by local recalculation of the density distribution (relaxation). Therefore, the Lattice
Boltzmann method operates on two simple equations. The advection step is given by

6.1 SIMD processing for Lattice Boltzmann methods 87

N4N2

N3

N5
N1

N8

lattice gas

N6

with Ni �
�
0, 1 �

lattice Boltzmann

N7

Figure 6.2: From the lattice gas to the Lattice Boltzmann representation.

Ni � t � 1, r ���ci � � Ni � t, r � ��� � t, r � with �ci being the connection vector to the neigh-
bor node. The relaxation step is given by � � t, r � � � 1

τ
� Ni � t, r � � Neq

i � t, r ��� using the
relaxation parameter τ � 6ν

� 1
2 and a equilibrium density distribution Neq

i .
The macroscopic quantities fulfilling the Navier-Stokes equations are obtained in

terms of the moments of the particle distribution functions.

Density: ρ � ∑i Ni � r, t �
Flow velocity: �u � ∑i Ni � r, t ���ci

�
ρ

Viscosity: ν � 1
6 � 2τ � 1 �

Pressure: p � ρc2
s

6.1.3 Driven cavity simulation

As the local recalculation of the particle distribution functions Ni is independent for
each cell, the Lattice Boltzmann approach is an ideal candidate for SIMD processing,
as the relaxation requires no neighbor information. Only the propagation step needs to
interchange data. The implementation therefore is structured as in listing 6.1.

initDistributions();
while (timestep && notConverged()) {
setBoundaryConditions();
relaxation(); // <-- SIMD
propagation();
timestep--;

}
computeMacroQuantities();

Listing 6.1: A Lattice Boltzmann algorithm for driven cavity flow simulation.

88 Simulation

�
u � �

u0 , 0 � T

�
u � 0

�u �
0� u

� 0

Figure 6.3: Geometry and expected flow within a driven cavity.

The SIMD performance has been evaluated for computing a driven cavity flow ex-
periment. It simulates the flow within a filled cavity. The opening of the cavity meets a
very large region that is assumed to have a strong constant flow. The cavity cannot influ-
ence the flow within the large region, so the driven cavity model simply asserts a special
boundary condition for the boundary cells in question. Figure 6.3 shows the geometry
of the experiment and the resulting flow. Depending on the velocity of the driving flow,
small currents in the lower corners of the cavity can occur, that rotate counter-clockwise.

To start the simulation, all cells are initialized to �u � 0, ρ � 1 except for the top row,
where the driving flow enforces �u � � u0, 0 � T. The particle density functions are initial-
ized with the simplest equilibrium distribution: Neq

i � 1. The advection step uses nine
density functions for the possible motion directions in 2D (“d2q9” method). For com-
puting the collision and momentum exchange, the local density and velocity therefore
has to be computed as

ρ � t, r � �
8

∑
i � 0

Ni � t, r � �u � t, r � � 1
ρ � t, r �

8

∑
i � 0

Ni � t, r ���ci

For efficient SIMD in-cache processing, the cavity is discretized such that each row

G
page 145

of cells is stored in a vector class that has an optional 3DNow! implementation of the
operators (� section 3.2). Experiments with cavity edge lengths ranging from 64 to 1024
cells have been performed on three Athlon PC machines with processor speeds of 800,
1200 and 1600 MHz. The fastest system is equipped with a Athlon 1600XP processor
which actually runs at 1400 MHz but has additional superscalar hardware. AMD how-
ever claims that this processor performs like a conventional processor clocked at 1600
MHz and therefore should be twice as fast as the 800 MHz system. All systems are
equipped with identical PC133 SDRAM memory.

Figure 6.4 compares the performance of the Lattice Boltzmann simulation in terms

6.1 SIMD processing for Lattice Boltzmann methods 89

0.5M
1.0M
1.5M
2.0M
2.5M
3.0M
3.5M
4.0M
4.5M
5.0M
5.5M

100 1000

LU
PS

resolution

Figure 6.4: Performance of the Lattice Boltzmann solver for Athlon 800, Athlon 1200
and Athlon 1600XP processors. The dotted lines show the performance of the C code,
the solid lines show the performance of the SIMD code for each processor.

of lattice site updates per second (LUPS) for each processor with 3DNow! SIMD sup-
port and without. The SIMD instructions are wrapped within C++ operator implemen-
tations, as described in section 3.2. There are several lessons to be learned from these
timings:

Facts
➟ Obviously, really good performance is only possible if the vectors fit in the pro-

cessor cache. This limit is reached already for very small vectors, as the algorithm
needs to keep all nine particle distribution functions in the cache.

➟ The performance gain for using 3DNow! SIMD instructions represents a factor of
three for in-cache vector lengths for all processor speeds.

➟ The increase in processor speed can not be exploited by the non-SIMD version:
The 1600 MHz system offers a peak performance increase of 1.4 � compared to the
800 MHz system, even for in-cache vectors.

➟ The SIMD version is able to maintain a factor of 1.6 increase for very large vectors
for the 1600 MHz system compared to the 800 MHz system, although both have
the same RAM interface.

The overall conclusion to be drawn from these facts is, that exclusively by using
SIMD instructions, the algorithm is capable of using the numerical power of faster pro-
cessors. Thus, without SIMD, the algorithm is entirely memory-bound and therefore not

90 Simulation

scalable. A high performance version for arbitrarily large lattices therefore should em-
ploy a tiling strategy and process the lattice in column stripes so the particle distribution
function vectors have optimal size to fit in the processor cache (� figure 6.5).

Figure 6.5: Decomposing the domain with vector lengths optimal for SIMD in-cache
processing.

As already pointed out in section 3.2, the SIMD instruction code has to be pro-
grammed in assembly language. For the Lattice Boltzmann solver, only very simple
operations had to be wrapped in C++ operators. Listing 6.2 shows a comparison of the
resulting high level program code. The SIMD-enabled code looks a bit more elongated,
but conserves its readability and maintainability like the C++ code. This clearly demon-
strates, that once the SIMD operations are encapsulated in a C++ class, there are no
drawbacks or major influences on higher level programming concepts. Further acceler-
ation of the SIMD code is possible by programming specific operators of the algorithm
in assembly language, like the computation of the square variable in listing 6.2.

6.1 SIMD processing for Lattice Boltzmann methods 91

// C++
float square = 1.5f*(vx2 + vy2);
float f_eq0 = 4.0f/9.0f*rho*(1.0f - square);

// SIMD
square = vx2;
square += vy2;
square *= 1.5f;
f_eq0.fill(1.0f);
f_eq0 -= square;
f_eq0 *= rho;
f_eq0 *= 4.0f/9.0f;

Listing 6.2: Comparing standard C++ code to SIMD-enabled code. Both are equally
maintainable.

92 Simulation

7
VISUALIZATION

What you see is all you get.

— Brian Kernighan

7.1 Interactive display of time dependent volumes

Time dependent simulations produce one result data set per time step. If the results
are given as scalar data at discrete positions in space, a voxel volume can be produced
by regular resampling. The volume then can be displayed with standard direct volume
rendering techniques. If the results are given as vector valued data, the line integral
convolution (LIC) [CL93] method provides a visualization procedure that gives a good
impression of the flow’s properties by blurred lines that resemble particle traces. The
main idea of the system presented in this section is to decouple the LIC computation
and the display of the volume, and to enable integrated handling of stationary and non-
stationary flows.

The approach shares the idea of using volume rendering to display the 3D LIC with
the work presented by Rezk-Salama et al. [RSHTE99]. In contrast to them, the system
enables the integrated analysis of any kind of flow by not restricting the visualization to
a single static volume source. It provides a solution to the problem of keeping the vol-
umes of each time-step in memory by using pixel-oriented video streaming techniques.
Additionally, it introduces the smooth integration of 3D LIC and particle transport vi-
sualization without additional memory or computational costs.

7.1.1 Displaying scalar volumes

In order to efficiently compress and transport the volume voxels, a configurable stream
encoder has been implemented. It takes the scalar volumes and slices them in each ma-
jor direction. The slices get reordered using a well defined enumeration scheme. This
produces one stream of slice images for each X, Y and Z. Each stream is compressed

94 Visualization

by a video encoder separately. Note that the system therefore implicitly accounts for
spacial and temporal coherence of the slices, as supported by the video codec.

In order to take full advantage of the ca-

Figure 7.1: Multiple volume slices
are stored in one image to optimize
codec usage.

pabilities of the encoder, it is in general not a
good idea to encode every volume slice separately.
The stream encoder therefore tries to tile adjacent
slices, using a well defined enumeration scheme,
into a larger image (� figure 7.1). The image
then gets encoded and is appended to the stream.
The encoder takes care to tile the slices in such a
way, that there is an equivalent number of images

G
page 145

per time-step of the volume in each of the three
streams, so it’s easy for the player to predict the
position of the next simulated time-step within the
stream. If the stream player can use 3D textures,
only one of the streams is needed. If 3D textur-
ing is not available (or not hardware accelerated),
the player can easily search the target stream for
the current frame number, if the shear-warp algo-

rithm needs to switch the slicing direction.
The main part of the system is the interactive stream player. Its layout is shown in

detail in figure 7.2. The pipeline design with ring-buffers between the most CPU con-
suming components enables efficient multi-threaded asynchronous processing. Addi-
tionally, each component can have multiple implementations which take advantage of
available hardware support or provide a software solution on other systems.

The main processing steps of the pipeline are (compare figure 7.2 from bottom to
top):

➟ Reader: It is responsible for providing the raw stream data. This can be a simple
file reader or a subsystem for network access. Its main task is to ensure the con-
tinuous data feed to the pipeline. This includes quality-of-service negotiation or
caching in the networked case.

➟ Stream decoder: This component interprets the byte stream from the reader by
splitting it into content streams. Currently, there is a stream of image data and a
stream of configuration commands for the successor components.

➟ Image decoder: The first task is to decode the image data. This includes decom-
pression and re-assembly of the image that has perhaps been split into interlaced
chunks or split-fields by the streams format definition. The second task is to per-
form pixel-oriented image manipulation. This is mostly used for conversion be-
tween color-spaces.

7.1 Interactive display of time dependent volumes 95

➟ Mapper: Here, the packing of multiple volume slices into a larger image is re-
verted. Because this component has knowledge about display properties, this is
the place to decide how to extract the slices from the image according to the
rendering method (3D textures � shear-warp) to be used. This includes pixel-
oriented operations on the slice textures to modify opacity, if the stream does not
provide opacity information.

shear−warp or
3D texture rendering

Screen

Mapper

identify textures
split and sort

process images

decompress
convert color

assemble frames

Image
Decoder

Stream
Decoder

interpret tags
split substreams

extract fields single frames
or fields

single frames
or fields

multiple volume
slices per texture

multiple volume
slices per texture

raw
Texture−stream

multiplexed
compressed
Byte−stream

compressed
Part−stream

Object−stream
raw

File Reader

Ring−Buffer

stream QoS

YCrCb

YCrCb

RGB

RGB

volume textures

Ring−Buffer

RGBA

Figure 7.2: The processing pipeline of the interactive stream player (pixel data only).

96 Visualization

The pipeline strategy applied here makes the interactive stream player very flexible.
As the main caveat with pipeline design is to ensure that the communication band-
width matches the data production rate of the pipeline steps, special attention has been
payed to this: While the reader and the stream decoder are tightly coupled for optimized
stream-oriented transport, the two decoders and the mapper are connected by a ring-
buffer component. This decouples the writing and reading routines of the connected
components and allows input processing at a different granularity than the block size
intrinsic to the data. For example, the stream decoder can choose to process the stream
as soon as it is available from the reader. This can be useful in case of memory-mapped
file access. Alternatively it can block until a certain amount of data has been received
and process it in one step in order to avoid frequent context switches when running on
a single-processor machine. Note that this strategy also helps the image decoder in case
of split-field or interlaced streams, or when the player is connected via a network.

The system described above has been imple-

Figure 7.3: Rendering 3D LIC vol-
umes with more than 10242 voxels:
The border marks the first slice of
each stream frame.

mented on a SGI O2 workstation. All measure-
ments have been done on a machine with R10000
195 MHz processor and MVP Vice TRE video
board. The timings and numbers throughout the
remainder of this section refer to a 1283 3D LIC
simulation with 100 time-steps.

The sliced voxel volumes get encoded into
Motion-JPEG streams which are written to disk.
The encoding of the images is done using the
hardware codec of the video board. This produces
three shear-warp streams with a size of � 18.5
MByte each, which equals a good compression ra-
tio of 1 : 10.8 .

The color conversion step in the stream player’s
pipeline also enables the mapping of additional
scalar values onto the volume. Also note that all
the possibilities of convenient visual access to in-
terior structures of the volume can also be used:
The image decoder and the mapper are using color-table mapping which can easily be
extended with the functionality described in their paper without a frame rate penalty.
The clipping approach also integrates nicely by introducing a geometry-description-
stream to be used for clipping during rendering. This however will degrade the render-
ing performance dramatically and lead to unacceptable frame rates, like Rezk-Salama et
al. have experienced. The color-table-based pixel manipulation therefore clearly is the
more efficient way to optimize the visual quality during rendering. The clipping ap-
proach however is a very powerful tool during stream creation. The stream encoder can
use it to remove unwanted parts of the volume prior to tiling the slices into one stream
image.

7.1 Interactive display of time dependent volumes 97

Because most video codecs have limitations on the image size that can be processed,
multi-pass rendering is used if the size of the tiled volume slice image exceeds the
codec’s capabilities. Figure 7.3 shows a volume with 1283 � 10242 � 2 voxels, that
has been rendered from two consecutive stream frames with 1024 � 1024 pixel each.
The first slice of each pass is marked by a border. Because each of the frames within
the stream is stored in interlaced mode, the player effectively draws 101 time-steps us-
ing 202 stream frames composed from 404 fields in this case. This automatically breaks
down the block size the codec has to handle to sizes that allow to put the ring-buffers
into framebuffer memory. On the test machine, we obtain rates of 9–14 frames per sec-
ond1.

Figure 7.4: Left to right: Two views from different perspectives for five subsequent time-
steps of a 1283 time dependent scalar volume (jet shockwave simulation).

The switching of the texture drawing sequence necessary for the shear-warp ren-
dering technique is supported by the stream decoder component (� figure 7.2): It has
three readers to choose from, each providing a stream for X, Y or Z major rendering di-
rection. Because the seek time for a particular frame in this configuration never exceeds
3 ms when doing jumps at random points in time, the switching of the streams is hardly
noticeable to the user. The fast search time is possible, because from the playback, the
direction in which to start searching is obvious2. Additionally, the latency of the pipeline
is entirely hidden by using motion prediction: The stream decoder can be instructed by
the mapper to start filling in frames from the target stream to the pipeline in advance to
compensate the predicted pre-roll time.

1Note that this is independent of the complexity of the voxel volume, compared to clipping
[RSHTE99].

2In the case of input from a file, the field indices can be cached upon player start[Ben75].

98 Visualization

7.1.2 Displaying vector volumes

As depicted in figure 7.5, the system for processing and displaying vector volumes con-
sists of three major building blocks. The first one is a LIC computation on the flow
simulation vector field. This is done by a small C++ program wrapping an optimized
Fortran LIC kernel. The kernel supports parallel LIC computation on shared memory
machines using a static load balancing scheme based on spatial partitioning of the vec-
tor field. Using an input volume and a vector field, it creates two output volumes: One,
containing the traditional LIC volume and a second one, that contains the input volume
distorted according to the vector field.

vector
field

input
image

Flow
Simulation

Stream
Encoder

Stream
Player

Figure 7.5: The whole system for processing time dependent volumes.

The creation of the second volume is folded directly into the LIC computation within
the kernel. It requires no extra computation time, because the LIC algorithm is already
sampling the motion vectors of the input field. The warped position of a point in the
second volume therefore is exactly the motion vector with maximum length at the orig-
inal position in the input field. Note that if vector field and voxel volume have the same
resolution, this reduces to a simple pixel-copy operation.

The user can choose which volume to process further. In the normal case, this will be
the computed LIC volume. In addition to the simulated time-step motion, the blurred
LIC lines help the spatial understanding (� figure 7.6). On the other hand, using the
second volume offers a simple way of doing before—after comparisons.

The biggest benefit of creating two volumes is, that the second volume can be used as
input volume for the next time-step, enabling pixel-transport visualization. The vector
field can be exchanged after each simulation step. Note that this feature enables the

7.2 Local exact particle tracing 99

display of non-stationary flow fields. The user simply has to place some non-zero spots
in an input field that is zero elsewhere, and the spots will be transported according to
the flow.

As the output of the above procedure is a scalar voxel volume, it can be compressed
and fed into the stream player as in the previous section. The user first chooses the
vector field and defines an initial input flow field configuration. In figure 7.6, the choice
was to place a block of 10 slices of white noise in the volume, in order to see how these
“particles” get distributed over time. Consequently, the LIC kernel was configured to
use the second output volume (the distorted input volume) as input volume for the
following time-step. The first output volume (the LIC volume) is sent to the stream
encoder, giving some kind of “LIC transport” visualization. Then, the LIC computation
of the flow simulation is started on the local machine. Simulating 100 time-steps takes
about 22 minutes for the pre-processing step at full resolution. Note that this is in sharp
contrast to the work of Rezk-Salama et al. [RSHTE99], where clipping against the time-
surface is done during rendering at the expense of frame rate. But from the point of view
of a CFD engineer, interactive visualization is the key point, which can be delivered by
the presented system.

Figure 7.6: Left to right: Two views from different perspectives for five subsequent time-
steps of a 1283 time dependent vector field that has been processed as LIC volume (ve-
locity field with discontinuities).

7.2 Local exact particle tracing

In many scientific areas computational fluid dynamics (CFD) simulations are of central
importance. The result usually describes the flow behavior in a 3D environment. To

100 Visualization

understand the characteristics of the simulated process, a meaningful visualization of
the data is necessary. The raw data is defined on a discrete structure, a grid. At the
nodes or vertices of the grid the velocity (a vector field) and other simulation data, e.g.
pressure, density or energy (scalar values) is stored.

One of the most common methods of acquiring knowledge of flows is the use of
particle tracing [USM96, NJS

�

97, Frü94]. It is also the basis of many other visualization
techniques such as streak-lines, streak-ribbons, time-surfaces or line integral convolu-
tion (� section 7.1). The particle tracing visualization method shows the trajectory of
one mass-less particle in the flow. The trajectory is obtained by the integration of the
ordinary differential equation corresponding to the vector field.

The integration is usually done numerically. In [KRG02], another approach for vector
fields defined on a tetrahedral mesh has been implemented within the gridlib project.
It is a modification of the exact integration method introduced by Nielson and Jung in
[NJ99]. This method traverses every cell in a single step. The modification comprises a
sophisticated parallel pre-processing of the data, which results in a classification of the
cells and provides for each cell sufficient information to perform the exact integration
very fast. The method determines the exact exit points of the particle for every cell that is
traversed. The particle trace is the polyline of the computed points or an interpolating
curve. In contrast to all the numerical integration schemes, this approach guarantees
that the local errors will not accumulate. Hence it is globally very accurate compared
to methods built on numeric integration. See [LB98] for a comparison of the achievable
accuracy for numeric integration schemes.

As the starting point of the particle trace is selected by the user, the method must be
fast enough to be usable in interactive applications. At the same time it may not pro-
duce incorrect results. Once a characteristic streamline is found, the user may wish to
display it most faithfully to the physical environment. Here, more expensive rendering
methods are acceptable. The streamline however must stay the same, so switching nu-
meric methods is prohibitive as it may result in particle traces shaped differently. We
present a visualization strategy that offers interactive rendering as well as high-quality
ray tracing output based on the same particle path building routine.

7.2.1 Integration methods

The classic Euler and Runge-Kutta integration methods mainly differ in the provided
accuracy related to the numerical integration itself. They do not take geometry issues
into account. Therefore, for achieving the same accuracy as the local exact method, the
classic integration methods would need much more and smaller steps. The Runge-Kutta
RK2 method for example is less expensive than the local exact method, but the number
of required steps for obtaining the same accuracy outweighs this advantage by far.

Table 7.1 shows the overall time needed by distinct integration methods to com-
pute streamlines for 1000 integration steps. The calculated paths consist of an identical
number of segments with the same overall length, so the average step size is the same.

7.2 Local exact particle tracing 101

The paths can be different, because the methods offer different accuracy. In order to
achieve the same numerical accuracy as the local exact method, the Runge-Kutta meth-
ods would need smaller step sizes, resulting in longer processing times. As the last two
lines of the table demonstrate, the local exact method is very competitive if the pre-
processing suggested in [KRG02] has been performed. The table has been generated for
the Sphere dataset, for which the pre-processing took 5.4 seconds. If the processing of
the local exact method is delayed and performed on-the-fly when the trajectory enters
a cell, no additional memory is needed. This demonstrates the ability of the algorithm
to trade memory for speed. All time measurements are wall-clock time on a SGI Octane
300MHz R12000.

integration method time (sec)
Euler 1.75
Heun 2.31
Runge-Kutta RK3 3.11
Runge-Kutta RK4 3.33
Local exact with pre-processing 2.63
Local exact on-the-fly 9.22

Table 7.1: Timings for different integration methods for 1000 integration steps on the
Sphere dataset.

The advantages of the local exact method can be briefly summarized:

PRO—
CON

✓ The local exact method gives the exact solution, provided that the numerical er-
rors are neglected, and one assumes that the underlying linear interpolation of the
vector field is a valid method.

✓ For the local exact method no point location is necessary. In fact, knowing the
neighbors of a tetrahedron, the next tetrahedron to be processed is given by the
location of the exit point.

✓ The local exact method traverses each cell in a single step. Therefore, the step size
need not to be specified, nor does one have to take care of (adaptively) modifying
it. The adaptation is built-in: For simulation, typically in numerically critical areas
or areas of special importance, one has a fine mesh of tetrahedra. In these areas,
the path segments produced by the local exact method are then small as well.

✗ The local exact method does need some additional memory. However the mem-
ory requirement can be scaled from storing all pre-processing data, to computing
the pre-processing data on-the-fly for each tetrahedron visited. The data may be
cached for reuse or discarded immediately.

102 Visualization

7.2.2 Cell classification

When the path line enters a cell, the intersection point of the exact solution and the exit
face of the tetrahedron is determined. The exit point is the entry point to the follow-
ing cell, where the method is repeated. The final particle path is the concatenation of
the intersection points. In contrast to [NJ99], the method used in gridlib does not pay
attention to all possible special cases. The tetrahedra are classified as follows:

➟ Parallel cells are cells whose vector field does not change the direction, i.e. all
four velocity vectors point in the same direction. Typically ten percent of all cells
belong to this group.

➟ Normal cells have three different eigenvalues as the linear part of the (linearly
interpolated) vector field. In addition, the critical point of the vector field is located
outside the tetrahedron.

➟ Extraordinary cells are all the remaining ones. Typically less than 0.5% of all cells
are of this type. Table 7.2 compares three randomly selected CFD data sets.

In the case of an extraordinary cell, a Runge-Kutta integration scheme is used until
the cell search routine detects a new cell. As table 7.2 shows, this case occurs very sel-
dom. Therefore, only extraordinary cells need to be traversed using multiple steps. The
vast majority of cells is traversed in a single step using highly accurate integration.

of cells Sphere Car Shuttle
total 8,193 457,874 1,058,785
extraord. 15 1,247 3,232
preproc. time 5.4 sec 112.8 sec 219.2 sec

Table 7.2: Number of extraordinary cells in local exact particle tracing.

7.2.3 Parallel pre-processing

The pre-processing step for the local exact method consists of computing the eigenval-
ues and eigenvectors of the tetrahedron that build its eigenspace. For doing the eigen-
value analysis, the linear interpolation �v � �x � � A �x � �o of the vector field must be de-
termined. The 3 � 3 matrix A and the translation vector �o are uniquely determined by

7.2 Local exact particle tracing 103

the four vector equations AVi � �o � �vi, (i � 0, 1, 2, 3), where Vi are the vertices of the
tetrahedron and �vi are the attached velocities.

#pragma omp parallel for private(cell,A,lambda,crit)
for (int i=0; i<grid.numCells(); i++) {

Cell cell = grid[i];

// check velocity field
if (cell.getVelocities().computeDeviation() < EPSILON)

cell.mark(PARALLEL);
else {

Matrix A = LinSolve(cell.getVertices(), cell.getVelocities());
Real lambda[3] = A.getEigenvalues();

// check for singularities
if (lambda.same)

cell.mark(EXTRAORDINARY);
else if (lambda.real)

cell.mark(REAL);
else

cell.mark(COMPLEX);

cell.setEigenvectors(A.getEigenvectors());

// check location of critical point
Vector crit = (-A).inverse() * o;
if (crit.isInside(cell))

cell.mark(EXTRAORDINARY);
}

}

Listing 7.1: The eigenvalues and eigenvectors of all tetrahedra are computed in a parallel
pre-processing step.

The eigenvalues of A must be different from each other. This condition is asserted
by classifying the tetrahedron by first checking the velocity vectors �v0, �v1, �v2 and �v3
at the vertices. If they all point in the same direction (with respect to some threshold),
the cell gets labeled parallel and the direction vector is stored. Parallel cells are treated
differently when building the particle path line.

For non-parallel cells, a complete eigenvalue and eigenvector analysis of A is per-
formed. The eigenvalues are computed using Cardano’s formula, which allows the an-
alytical calculation of the roots of the polynomial (which is of order three in this case).
Now the tetrahedron is labeled real if all its eigenvalues are real. It is labeled complex if
two of them are complex conjugates.

104 Visualization

Finally, the tetrahedron is labeled extraordinary, if the eigenvalues are the same
(with respect to some threshold) or if the critical point �xcrit of the linearly interpolated
vector field lies within the tetrahedron:

A �xcrit � �o � 0 � �xcrit � � A � 1 �o

Listing 7.1 shows the pseudocode for the algorithm. Note that the calculations for each
cell are independent, which allows to employ the OpenMP parallelization strategy.

7.2.4 Building a smooth curve

In order to make the streamlines look more pleasant, the segment within one grid ele-
ment should be represented by a cubic curve. From the pre-processing step, the exact
exit point �x � tout � on the tetrahedron and the exit time tout is known. The entry point of
the tetrahedron �x � tin � is the exit point of the previously processed cell. By defining the
cell time tcell � tout � tin, the corresponding velocity vectors �vin and �vout are obtained by
linear interpolation. Now the unique Bézier curve interpolating position and velocity
can be calculated easily using Bernstein polynomials.

In addition, please note that the the Bézier�
x1

�
x2

�
v

� �
x2 �

�
x0

Q0

Q1 Q2

Q3

�
vout

�
vin

�
v

� �
x0 �

�
v

� �
x1 �

Figure 7.7: Building a simple
Bézier spline for a smooth particle
curve.

spline (� figure 7.7) being the Hermite inter-
polant, has the better local approximation error
O � h4 � compared to O � h2 � for the linear inter-
polant.

The local exact particle path faithfully fol-
lows the true vector field. The figure 7.8(a) shows
the trajectory computed in a synthetic three-tetra-
hedra dataset displayed using OpenGL line prim-
itives. The flow vectors of the outermost vertices
are perpendicular and point up, right and down
when going from the left tetrahedron to the right
one. Traditional integration methods need a small
step size to produce an equivalent line. The local

exact algorithm computes the particle trace in just three steps. In the ray traced image
7.8(b), the three segments of the particle curve are emphasized by different colors. Fig-
ure 7.9 shows particle trajectories in the simulation data set “car”, see also color plate
B.8.

7.2 Local exact particle tracing 105

(a) (b)

Figure 7.8: High-quality visualization using the local exact integration method for parti-
cle tracing. In (a), the trajectory is rendered with OpenGL. The smooth ray traced curve
in (b) is colored differently in every segment computed. See also color plate B.6

Figure 7.9: Car model in the wind tunnel computed with the local exact method.

106 Visualization

8
RENDERING

Software is hard.

— Donald E. Knuth

8.1 Transparent Distributed Processing For Rendering

Rendering, in particular the simulation of global illumination, uses computationally
very demanding algorithms. As a consequence many researchers have looked into
speeding up the computation by distributing it over a number of computational units.
However, in almost all cases the relevant algorithms have been completely redesigned
in order to achieve high efficiency for the particular distributed or parallel environ-
ment. At the same time, global illumination algorithms have gotten more and more
sophisticated and complex. Often several basic algorithms are combined in multi-pass
arrangements to achieve the desired lighting effects. As a result, it is becoming increas-
ingly difficult to analyze and adapt the algorithms for optimal parallel execution at the
lower levels. Furthermore, these bottom-up approaches destroy the basic design of an
algorithm by polluting it with distribution logic and thus easily make it unmaintainable.

In this section, a top-down approach for designing distributed applications based
on their existing object-oriented decomposition is presented [KS99]. Distribution logic
given through the coarse grained CORBA parallelization and distribution strategy, is in-
troduced transparently to the existing application logic. The design approach is demon-
strated using several examples of multi-pass global illumination computation and ray
tracing. The results show that a good speedup can usually be obtained even with mini-
mal intervention into existing applications.

There is a large number of papers on parallelization and distribution of rendering
and lighting simulation algorithms. Good surveys are available in [RCJ98, CR98, Cro98].
Most of the papers concentrate on low-level distribution for achieving high perfor-
mance. One of the few exceptions is the paper by Heirich and Arvo [HA97] describ-

108 Rendering

ing an object-oriented approach based on the Actor model. Although their system pro-
vides for location and communication transparency, the distribution infrastructure is
still highly visible to the programmer.

8.1.1 Distributed Lighting Networks

The presented distribution framework has been developed for the Lighting Network
subsystem in the VISION rendering framework [Slu96, SSS98, SSH

�

98]. Individual Ren-
derer and LightOp objects are to be distributed across a network or to be run in parallel
through the use of threads. Color plate B.5 shows an example network that computes
high quality lighting using both direct and indirect illumination algorithms.

For the implementation, the basic operating system functions are accessed via the
operating system adaption layer interface of the ACE library (� section 1.3.1). The com-
munication and remote object creation is done using CORBA (� section 1.3.2). To facil-
itate further development and maintenance, the design of the base classes follows the
guidelines of several design patterns [GHJV95, CS98, LS96, SHP97, McK95].

In the following, an integrated approach to parallelization and distribution of appli-

G
page 145

cation modules is presented. It is based on the fact, that object-oriented systems should
be and usually are composed of several quite independent subsystems. In contrast to
addressing parallelization at the level of individual objects, larger subsystems of ob-
jects usually offer a better suited granularity for distributing the work across comput-
ers. These subsystems are often accessed through the interface of a single object using
the “facade” design pattern. In an application based on this common design approach,
these few facade classes can easily be mapped to CORBA interfaces [OMG97b], provid-
ing the basis for distributing the application. However, this initial step does not solve
the problem completely, as the CORBA-specific code would be introduced at the heart
of the application and the details of distribution should not be visible to a developer.

8.1.2 Design Patterns for Transparent Distribution

In order to make the distribution and parallelization related parts transparent to the
programmer of rendering or lighting algorithms, a new distribution interface that com-
pletely hides the CORBA distribution infrastructure from the application is built. The
new interface provides the illusion of traditional, non-distributed classes to the outside,
while internally implementing optimized distributed object invocations. It is based on
asynchronous communication with a multi-threaded request-callback scheme [SV96]
to enable a maximum of parallelism. Additionally, the framework performs load bal-
ancing and bundling of requests to avoid network latencies. For encapsulating exist-
ing interfaces, the framework provides base classes that carry management services for
object creation, communication transport control and synchronization and many other
services (see below). The wrapper for the subsystems that contain the rendering and
illumination algorithms use and inherit from these base classes.

8.1 Transparent Distributed Processing For Rendering 109

Wrapping for Distribution

In order to actually reuse the existing object implementations within a distributed envi-
ronment, the distribution framework provides wrappers for entire subsystems. A wrap-
per actually consists of two half-wrappers that encapsulate the subsystem as a CORBA
client (calling) and as a server (called) (� figure 8.1(a)). Assuming that a subsystem is
represented by at least one abstract C++ facade class and communicates with the out-
side through interfaces defined by similar facade classes, replicating each of these inter-
faces in CORBA IDL [OMG95a] gives a complete distributable system for the existing
implementations. Additionally, new methods that allow for the bundling of multiple
requests on the calling side are defined. The server side is implemented by forward-
ing the requests to the wrapped facade object in a pseudo-polymorphic way (� section
4.4.1), serializing any bundled messages that arrive, and managing asynchronous calls
(� figure 8.1(b)).

back
end

serializer

generic
access

template
proxy object

front
end

packer

traditional
implementation

(a)

freeIllumTriMesh()
getIllumTriMesh()
getHPCTree()
getQuadTree()

getKdTree() getKdTree()
freeIllumTriMesh()
getIllumTriMesh()
getHPCTree()
getQuadTree()

getOutputRep()
new

delegate

computeIlluminations()

delegate
LightingComputerBase

serialize
saveState()
useView()
prepareIllumination()
getIllumination()

addInputRep()connect
new

addInputRep()

getIllumination()
prepareIllumination()
useView()
saveState()

self

LightOp

External Polymorphism
Adapter

IllumRepConverter

LNWLightOp � LightOp �

IllumRep � IllumBasis �

(b)

Figure 8.1: Reusing existing implementations without code modifications through
wrappers.

For the client role of a wrapped subsystem, C++ classes need to be instantiated that

G
page 145

derive from a distributed C++ proxy template. They translate the calls from the original
C++ interface to calls, that use the CORBA object references. This layer is also respon-
sible for bundling individual calls and using the new asynchronous interface methods
for bundled requests within the CORBA interface.

Although this wrapping seems complicated and does require some small amount of
manual coding, most of the work can be delegated to generalized template abstract base

110 Rendering

classes. When viewed from the outside, the encapsulated subsystem looks just like a
distributed CORBA object using the equivalent CORBA IDL interface. To the contained
object, the wrapper looks exactly like any other part of the traditional system using the
original C++ interfaces.

The biggest benefit of using this kind of wrappers is the possibility of reusing ex-
isting code. While this does not take advantage of parallelization within a subsystem,
it enables the distribution and parallelization of different subsystems. This can be of
great value, in particular when multiple memory-intensive algorithms have to be sepa-
rated across multiple machines. The interfaces, provided by the wrappers, finally allow
wrapped traditional objects to transparently cooperate with other distributed objects.

Replication and Request-Multiplexing

In order for old code to use distributed subsystems, an additional wrapper is necessary.
Its interface is derived from the original C++ facade interface, but it translates the mes-
sages to corresponding calls to distributed CORBA objects, e.g. those from the previous
section.

As mentioned before, this trans-

Request

Manager

Thread
Pool

Multiplexer 1

Request

Manager

Thread
Pool

Ray Tracer

Ray Tracer

Host 0

Host N

Multiplexer 2

Processor 0

Processor N

as
yn

ch
ro

no
us

co
m

m
un

ic
at

io
n

Lighting

Figure 8.2: A multiplexer can distribute or parallelize
computation objects through replication.

lation has several aspects. For
one, it translates between tradi-
tional and CORBA types where
object data needs to be copied
into IDL structures. Second, small
individual requests may be ac-
cumulated and sent across the
network in bundles, thus avoid-
ing network traffic overhead. In
addition, we take the opportu-
nity of the wrapper to perform
multiplexing and re-packeting of

requests across a pool of functionally identical CORBA servers. This allows to distribute
the computational load evenly using load balancing performed by the wrapper. How-
ever, because of the current synchronous nature of CORBA method calls, multiplexing
needs to use the request-callback scheme provided by the base classes of the framework.

Load balancing is performed by sending requests to the server with the lowest load.
To this end, the servers maintain FIFOs of requests to balance network latencies. The
fill-level of those FIFOs is communicated back to the wrappers piggy-packed on data
returned in the callbacks. Using this scheme, the multiplexed classes look to the out-
side like a single, more powerful instance of the same subsystem (� figure 8.2). The
benefit of this approach is that by using wrappers and multiplexers, existing code can
fairly easily be wrapped, replicated, and thereby sped up. While multiplexers fan out
requests, the wrappers introduced in the previous section automatically combine and

8.1 Transparent Distributed Processing For Rendering 111

concentrate asynchronous requests from multiple clients. Note that both patterns per-
fectly meet the goal of distribution transparency and do not alter the application logic
of the remaining system at all.

The pseudocode in listing 8.1 shows how a multiplexer for lighting computations
inherits the interface of the lighting base class and overloads the computation request
method by implementing some scheduling strategy (� figure 8.1(b)).

IDL:

interface LightOp {
void computeIlluminations(in sequence<Request> req);

};

interface Multiplexer : LightOp {
void addLightOp(in LightOp op);

};

C++:

class Multiplexer : public IDLmultiplexerInterface {
virtual void addLightOp(LightOp op) {

lightOpList_.push_back(op);
}
virtual void computeIlluminations(Request req[]) {

int idx= determineBestServer();
lightOpList_[idx]->computeIlluminations(req);

}

protected:
vector<LightOp> lightOpList_;

};

Listing 8.1: A multiplexer for lighting computations is build by inheriting the lighting
interface and overloading the request method.

The performance of the asynchronous communication pattern of the multiplexers
and wrappers is shown in table 8.1. It compares the packeted data transfer within a
small lighting network using asynchronous requests with an equivalent network using
the original interface with fine granularity. Both cases use wrapped traditional LightOps
and the same host configuration:

112 Rendering

SGI Onyx Onyx O2
processors 4 2 1
R10k @ MHz 196 195 195
Renderer �
Lighting Irr. Grad. Direct Combine

wallclock
seconds for asynchronous LightOps wrapped-only LightOps
Session Setup

distributed
Combine
LightOp

distributed
Direct

LightOp

distributed

LightOp
Irradiance Grad.

MultiLightingRendererSession

async

async

Host 2Host 0

async

Host 1

22.26

LightOp
Irradiance Grad. Combine

LightOp
Direct

LightOp

MultiLightingRendererSession

async

Host 2Host 0 Host 1

sync sync

23.37
Parsing Scene 5.80 5.67
Lighting Setup 1.56 1.68
Renderer Setup 0.30 0.34
Init Operators 25.38 26.91
Render Frame 1,922.06 2,916.95
Total 1,977.36 2,974.92

66 % 100 %

Table 8.1: Packeted asynchronous data transfer within a lighting network compared to
LightOps using CORBA’s synchronous request invocation.

Transparent Services

Some subsystems are computational bottlenecks and promise to offer substantial speed-
up when they are completely re-implemented to take advantage of distribution.

The framework provides dis-

kd-Tree

Particle Tracer

Photon Map

Request

Thread
Pool

Manager

distributed Photon Map LightOp

Figure 8.3: The framework offers several services for
writing distributed computation classes.

tribution and parallelization ser-
vices within the wrapper classes
that go beyond plain data trans-
portation and interface adaption,
such as thread-pool handling,
mutexes, factories for one-to-many
and many-to-one operating threads
and their synchronization, run-
time system state and type infor-
mation.

This pattern is the most pow-
erful form of creating a new
computational object for the dis-

tributed system. It does however require knowledge about the design and behavior
of the distribution services. Because the wrapper classes provide the CORBA interface
to the other traditional subsystems of the framework, a distributed or parallel imple-
mentation of a subsystem can easily access them directly. A good example is a class

8.1 Transparent Distributed Processing For Rendering 113

that performs distributed lighting computation using the PhotonMap algorithm [Jen96]
(� figure 8.3). Existing code for tracing of photons from the light sources and for re-
constructing illumination information can easily be reused. Both reused object imple-
mentations are wrapped with the patterns described above. Because the algorithm is
aware of its distributed or parallel nature, it can steer and adapt to the computational
requirements, e.g. by adding new particle tracer threads on a multi-processor machine
or adding new instances of distributed objects. This scheme allows the programmer to
gradually make selected subsystems aware of the distribution infrastructure without
compromising the remaining system on the way.

8.1.3 Discussion

The programming design patterns introduced above offer several benefits:

Facts
➟ New developments within the traditional framework are immediately dis-

tributable through the wrapper pattern, which offers speedup through replication
and multiplexing.

➟ There is no need for developers of algorithms to bother with distribution and par-
allelization issues because the distribution framework does not alter or interfere
with the application logic.

➟ The distribution and parallelization services offered by the framework provide
the developer of advanced computation classes with basic functionality that is
guaranteed to conform to the overall design.

➟ The learning effort for beginners can be reduced dramatically by a transparent
distribution infrastructure – in particular if compared to other distribution frame-
works and the large number of new software concepts introduced by them.

➟ The distribution framework transparently supports modularization and helps to
structure the framework into toolkits with well defined interfaces. This can help
to reduce the overall programming effort, and promotes a better understanding of
the big picture.

For the VISION rendering system, distributed LightOps have been implemented us-
ing the design patterns from above. In order to reuse the traditional LightOp implemen-
tations efficiently, several multiplexer classes are available along with different schedul-
ing strategies. This allows for building distributed lighting networks, that functionally
distribute lighting calculations. The configuration of the distributed objects is usually
specified in a TCL configuration file using the existing scripting engine of the traditional
VISION system, avoiding the introduction of a second tier of abstraction for configuring
the distributed system (unlike [Mer99]).

114 Rendering

Distributed Rendering

To optimize rendering times in the case of calculating previews or testing new com-
putation class implementations, the following configuration of a distributed VISION
system shows the best achievable speedup found when using the framework. It uses
4 hosts with a total of 8 processors. There are 8 ray tracers to work in data-parallel
mode and 6 lighting modules. Each group is controlled by a multiplexer. The distribu-
tion framework ensures that all communication between the two multiplexers is done
asynchronously. Here is the setup:

SGI Onyx Onyx O2 O2
processors 4 2 1 1
R10k @ MHz 196 195 195 195
Renderer 4 2 1 1
Lighting 4 2 - -

The lighting hosts execute a traditional implementation of an Irradiance Gradients
[WH92] LightOp, which is wrapped for distribution. Additionally, the wrappers on
the multi-processor machines also include a multiplexer that executes the incoming re-
quests in parallel using a thread pool. Because there are multiple threads per CPU, the
multiplexer synchronizes them in order not to overload the machine.

Table 8.2 compares the distributed system to the traditional VISION system with a
single thread of control, running on the fastest machine in a single address space and
calculating lighting with the very same LightOp implementation. The speedup obtained
is near the theoretical maximum of 12.5%. The overhead of � 90 seconds consists of 30
seconds session setup, 5 seconds of additional parsing on the CORBA startup client and
another 5 seconds delay for allowing the hosts to clean up the CORBA objects before
the main CORBA startup client shuts down all VISION instances. After subtracting this
overhead, a penalty of � 13% remains during the rendering phase for the distributed
system. This is a very good result, given such a general and unintrusive distribution
infrastructure.

Distributing Complex Lighting Computations

The functional decomposition of a lighting network offers the biggest potential for dis-
tribution and parallelization, at the risk of high communication costs. The asynchronous
request-callback communication paradigm is able to provide a partial solution for that
problem. The following configuration uses 3 hosts with a total of 7 processors:

SGI @ MHz # proc. R10k Renderer Lighting
Onyx 196 4 Photon Map, Direct, Combine
Onyx 195 2 � Photon Map, Irrad. Grad.
Octane 175 1 � Photon Map

8.1 Transparent Distributed Processing For Rendering 115

wallclock
seconds for distributed System traditional VISION

Session Setup
Host 0

Host 3

Multiplexer 1 Multiplexer 2

async

Host 1

Host 0
Host 1

Host 2

Irradiance
Gradients
Lighting

Irradiance
Gradients
Lighting

Ray Tracer

Ray Tracer

Ray Tracer

Ray Tracer

31.91
Host 0

Irradiance
Gradients
Lighting

Ray Tracer

-
Parsing Scene 5.61 -
Lighting Setup 0.14 -
Renderer Setup 0.36 -
Init Operators 32.36 20.95
Render Frame 317.03 2,359.20
Total 387.41 2,380.15

16 % 100 %

Table 8.2: A distributed system using two multiplexers, controlling the data-parallel
renderers and the lighting objects on the left side, are compared to the traditional single-
threaded system.

In this setup, the reconstruction method of the PhotonMap LightOp takes much
more time to process a request, than any of the other LightOps in the lighting network.
Consequently, a multiplexer is used to distribute this LightOp onto 3 hosts. In contrast,
the three other LightOps are executed on multi-processor machines, because their re-
construction method is fast and the communication between them can be optimized, if
the CORBA implementation supports object collocation. In order to drive this complex
lighting subsystem, two hosts execute rendering objects controlled by a multiplexer in
a data-parallel way.

As table 8.3 shows, the speedup obtained by this setup is not as good as in the pre-
vious example. But even the advantage of the non-distributed version of running in a
single address space, does not outweigh the communication overhead of the distributed
system. Profiling shows, that the performance difference to the theoretical maximum of
14.3% is mainly due to process idle times. This occurs for example, if the calculation
of one upstream LightOp is sufficiently delayed. Since the underlying Lighting Net-
work is entirely pull-driven, the pipeline is blocked. The framework therefore allows
the asynchronous interface to drive three parallel streams at a time. Additionally, the
resource handling within the base classes allows running the rendering computation
concurrently with a lighting computation, resulting in a kind of interleaving CPU-usage
scheme, if the lighting pipeline on the host is stall.

This example shows that there are cases where the full transparency of the distri-
bution infrastructure cannot hide inherent limitations due to coarse grained commu-
nication patterns of existing subsystems. Note however, that this behavior is mostly a
problem of the non-distribution aware algorithms of the lighting network and not so
much a general drawback of the distribution framework. However, even with the very
limited success, some speed-up without any change to the application logic is possible.

Apart from that, one has also to take into account, that while a traditional system
performs quite well in this case in terms of execution speed, it is severely limited by

116 Rendering

wallclock
seconds for distributed System traditional VISION

Session Setup

async asyncasync

async

async async

async

Host 0+1 Host 2 Host 3,4,5

Photon
Map

Photon
Map

Irradiance
Grad.

Ray Tracer MultiplexerCombine

Direct

Multi
Lighting

79.14
Host 0

Irradiance
Grad.

Photon
MapRay Tracer Combine

Direct

Multi
Lighting

-
Parsing Scene 10.43 -
Lighting Setup 4.58 -
Renderer Setup 0.28 -
Init Operators 72.46 1,185.77
Render Frame 1,498.39 6,988.45
Total 1,665.28 8,174.22

20 % 100 %

Table 8.3: On the left, the lighting network is distributed among 3 hosts. On the right,
the same computations are done with the traditional single-threaded system.

the host’s memory resources. Especially the PhotonMap LightOp needs to store many
photons that have been shot into the scene when working with large scene descriptions.
The distributed PhotonMap LightOps in this example have the memory of three hosts to
their disposition. Furthermore, the initial shooting of particles is done in parallel, reduc-
ing the operator initialization time needed to at least one seventh (there are 7 processors
on the three hosts), which is of great value when simulating high quality caustics.

8.2 Parallel rendering

Within the gridlib framework, abstraction and encapsulation is performed on several
levels. Along with ensuring reentrant implementations, it is the foundation paralleliza-
tion and distribution is built on. The gridlib uses the coarse grained message passing
strategy MPI for transparent parallelization and distribution. Although the gridlib sup-
ports Linux on the PC, IRIX on SGI Onyx and Origin machines, we concentrate in this
section on the Hitachi SR8000-F1 supercomputer architecture [KON].

Figure 8.4 shows the general data flow within the integrated simulation and visu-
alization environment. A designated process requests the grid from the I/O subsystem
and distributes it equally in terms of elements to all participating processes. Then, a re-
fined partition is computed by all processes in parallel. Geometry or custom weighting
of the elements can be taken into account (vertices � � grid nodes). Also, the gridlib can
create the dual grid and compute the partition graph on it (vertices � � cell centroids).
After performing the simulation, the partition is reused by the rendering subsystem to
draw only the assigned part into a private rendering context. Note that this also dis-
tributes the memory requirement. Upon completion, all partial images are combined
into the final framebuffer by a synchronized method.

Because the sizes of practically relevant datasets for CFD simulation easily exceed
local memory resources, a dataset must be distributed among processing entities (PEs).

8.2 Parallel rendering 117

Partition Simulation Visualization Rendering

I/O Subsystem Framebuffer

RenderingVisualizationSimulationPartition

execute on supercomputer execute on supercomputer
or on workstation

Figure 8.4: Overview of data flow for parallel rendering.

The interconnect between the PEs has much less bandwidth than local memory and is
therefore a bottleneck. Consequently this communication cost dominates the total data
exchange time. The gridlib framework processes the grid geometrically and topolog-
ically in order to build an adjacency graph in parallel. From this graph, the parallel
METIS [KSK97] library computes an optimal partition which is evaluated by the gridlib
for moving the geometry accordingly.

For running CFD solvers, the partitioning criterion clearly has to minimize the num-
ber of partition boundary elements in order to minimize the communication cost. The
rendering subsystem then uses the existing partition to run the visualization and ras-
terization in parallel. This does not provide an equal number of triangles to render for
each PE, because it depends on the visualization method and parameterization. How-
ever, transferring geometry between the PEs is too expensive both in terms of time and
memory. Therefore, the visualization and rendering is performed on the same partition
as the simulation to avoid delays.

8.2.1 Rasterizer performance

The following results have been obtained on a Hitachi SR8000-F1 supercomputer using
a subset of 8 nodes of the machine. Each node is equipped with 9 processors with one
being reserved for system activity and has 8 GBytes of local memory. The distributed
resources used therefore are 64 processors with 64 GBytes of memory on 8 nodes. Al-
though the processors of one node are sharing the memory, the coarse distribution con-
cept of the gridlib performs a one-to-one mapping of processors to processes. This has
the advantage of being free to place a process on any processor in any node to ensure
data locality and coarse load balancing.

The rendering subsystem implementation has been evaluated for the worst case of
rendering all the faces of all elements of the simulation grid. This incurs considerable

118 Rendering

overdraw. Many visualization algorithms however output unrelated triangles, which is
simulated by this approach. The triangles can be rendered immediately or can be stored
in a 2D mesh. Note that a typical visualization as in figure B.2 normally has several
orders of magnitude less triangles to draw than there are grid elements. Because the
triangles produced by the visualization are directly drawn from the simulation grid,
the renderer needs no additional memory apart from the framebuffer and some state
information. All timings have been measured in wall-clock time.

Figure 8.5: The software rasterizer within the gridlib rendering subsystem implements
a distributed framebuffer.

Each renderer has a private rendering context. In the case of parallel rendering, the
framebuffers therefore must be combined in a synchronized manner to get the final
image. As shown in figure 8.5, each renderer determines the screen-space bounding box
of the drawn image. When done with the visualization task, the framebuffer content
and the Z-buffer of this area are transmitted to a master process along with the absolute
screen-space coordinates of the bounding box. The transmission is done via blocking
MPI calls, so implicit synchronization is guaranteed. The master process then combines
the received partial framebuffer with its own framebuffer by performing a per-pixel
overlay according to the transmitted Z-values.

Figure 8.6 demonstrates the scalability of the rendering subsystem. Almost linear

8.2 Parallel rendering 119

0

100000

200000

300000

400000

500000

600000

700000

800000

0 10 20 30 40 50 60 70

tr
ia

ng
le

s
pe

r
se

co
nd

number of processors

Figure 8.6: Scaling of the parallel rendering subsystem in terms of number of processors
used.

speedup is obtained, although the communication volume in the Z-buffer merging stage
is growing with the number of processors. The amount of pixels to transport is mini-
mized by the method mentioned above.

21000

21200

21400

21600

21800

22000

22200

22400

1 2

tr
ia

ng
le

s
pe

r
se

co
nd

number of nodes

(a) N = 2

25000

30000

35000

40000

45000

1 4

tr
ia

ng
le

s
pe

r
se

co
nd

number of nodes

(b) N = 4

Figure 8.7: Comparison of experiments of assigning N renderers to 1 node (left columns)
or 1 renderer to N nodes (right columns).

The synchronization of the buffer merging stage is ensured by using blocking MPI
calls. Although this seems to cause unnecessary delays, it is not a problem in prac-
tice, because the overall rendering time in most cases is typically in the range of one
second, which is negligible compared to total execution times of the inner simulation-
visualization loop of several minutes up to hours. Dynamic redistribution of the tri-
angles to rasterize would incur communication overhead that slows down the whole

120 Rendering

process considerably.
One can therefore easily afford to render the visualization on nearly every intermedi-

ate time-step while the simulation is running. The images created can be streamed back
to the user interface and help to judge the simulation process to detect divergence, bad
boundary setup or bad initial conditions in which case the simulation can be aborted to
save CPU time.

The efficiency of this approach is shown in experiment (a) of figure 8.7, where two
renderer instances running on the same node are compared to two instances running on
two separate nodes. The same was done in experiment (b) using four instances on the
same node and one instance on four nodes respectively. The performance differences are
within the normal measurement jitter using wall-clock time. The figures clearly show
that there is no time penalty for distributing the rasterizers to different nodes. In other
words, the overhead of the Z-buffer merging stage is not apparent.

When comparing the performance of

30000

40000

50000

60000

70000

80000

90000

1 8

tr
ia

ng
le

s
pe

r
se

co
nd

number of nodes

Figure 8.8: Saturation of system commu-
nication channels.

the rendering subsystem by running 8 ras-
terizers concurrently, a slight performance
loss can be observed in the case of run-
ning all rasterizers on a single node (figure
8.8 left column). This is due to suboptimal
MPI support for intra-node operations on
the Hitachi. In contrast, when distributing
one rasterizer to each one of the 8 nodes, no
performance penalty is observed (figure 8.8
right column). Normally, one would expect
that inter-node operations are more expen-
sive than intra-node operations. Therefore,

additional profiling has been performed on an SGI Onyx machine (shared memory ar-
chitecture), which does not exhibit this behavior and thus clearly identifies the shared
memory communication to be the bottleneck of the Hitachi supercomputer. This also
justifies the approach not to compute a separate partition of the grid for rendering. The
communication time incurred by it easily exceeds the total time spent for rendering.
As the coarse distribution strategy was to employ MPI, the bottleneck is easily circum-
vented by placing only one rasterizer on each node. The rasterizers performance is suf-
ficient for response times of one second and no intra-node communication is induced
that may slow down the simulation code.

8.2.2 Optimization

As mentioned earlier, for the performance tests above, the worst case of rendering all
faces of all elements individually has been presumed. This can be compared to OpenGL
rendering triangle by triangle in immediate mode. Clearly, a lot of optimizations are
possible if the renderer is allowed to work on a larger 2D triangle mesh, which can be

8.3 Ray tracing in hardware 121

compared to rendering OpenGL triangle-strips in retained mode. This comes at the ex-
pense of additional memory requirement for storing the 2D mesh and some acceleration
structure. The gridlib rendering subsystem features several standard optimizations for
2D triangle meshes. When using them, the software rasterizer has a peak performance
of up to 91,000 smooth-shaded triangles per second on a single CPU.

8.3 Ray tracing in hardware

As, at the time of writing of this thesis, there is currently no existing implementation
of a ray tracer using FPGA technology, some related work should be reviewed first. It
can be divided into two main categories: Using a lot of hardware to make the ray tracer
interactive or using hardware to satisfy special requirements of the rendering algorithm.

One of the first papers about real-time ray tracing is from Muuss et al.. They im-
plemented an image-space parallel ray tracer on a 96 processor SGI PowerChallenge
[ML95]. A similar approach [PMS

�

99] is the real-time ray tracer of Parker et al.. Recent
research by Slusallek et al. has shown the importance of exploiting coherence inher-
ent in the ray tracing approach [WSBW01]. Their implementation uses 7 dual-processor
PCs. They validated the theoretical statement, that ray tracing is faster than triangle ras-
terization for large numbers of triangles [WSB01]. All approaches share the property of

G
page 145

being pure software implementations that have been tuned to platform specific hard-
ware capabilities. They have a large number of general-purpose processors and (nearly)
unlimited memory resources at their disposition. The obtained frame-rates are closely
related to the time required for preprocessing.

For the special case of volume rendering by ray casting, Pfister et al. presented
in 1999 the first single-chip real-time rendering engine for consumer PCs, the Vol-
umePro board [PHK

�

99]. It has been preceded by similar university research projects
[SB94, Kni96]. The rendering performance is possible because of the embarrassingly
parallel nature of the shear-warp algorithm for orthogonal projection that is used. Re-
cently, Pfister et al. have proposed an extension of the VolumePro approach, the RAYA
architecture [PK01]. It extends the voxel-based ray casting to a full ray tracing solution
for both voxel and geometric primitives and may provide programmable shading. Up
to now (October 2002), there is no working sample available.

In contrast to the highly specialized VolumePro board, Mai et al. have proposed
the multi-purpose massively parallel and hierarchical Smart Memories architecture
[MPJ

�

00]. It features general-purpose RISC processors with local RAM and high-
bandwidth interconnects tiled onto a single chip. Although this approach is not ex-
plicitly targeted for ray tracing, the huge numeric power and the parallelism available
make this concept an ideal candidate for image-space partitioned coherent ray tracing.

Other related work comes from Advanced Rendering Technologies. The commer-
cially available RenderDrive [ART99] uses several full custom design chips to build
a hardware unit that serves as computation device for offline, non-interactive, high-

122 Rendering

quality rendering applications. The device is not targeting interactive frame rates, but
concentrates on fully programmable, RenderMan compliant shading. It uses an array of
custom designed ASICs with RISC core and 32 floating-point units each, which makes
the system quite expensive.

All of the above approaches are based on RISC processors or try to alleviate nu-
merical demanding computations (VolumePro). The biggest drawback however is their
dedication to a specific task. Changing the algorithm to obtain customized results can
completely invalidate their run-time behavior. The RenderDrive and the Smart Memo-
ries architecture seem to offer the biggest free reserves and flexibility. Their enormous
numerical and memory resources suggest brute-force approaches.

Styles et al. in contrast have shown, that current generation FPGA chips (� sec-
tion 3.3) offer the possibility to develop customized graphics applications that use a
set of simple commands to execute custom graphics functions on the FPGA [SL00].
They implemented a triangle rasterization system that delivers frame-rates equivalent
to software rasterization. Current generation graphics cards however outperform the
FPGA by far. We therefore propose to use the FPGA as a graphic co-processor for non-
rasterization tasks, like ray tracing.

This approach seems to be the most promising, and Purcell et al. have tried to solve
the problem using consumer graphics cards [PBMH02]. They did not manage to get the
system running on current hardware, as some vital instructions are missing. The results
they obtain from a simulator however show clearly that a gradual convergence between
ray tracing and the feed-forward hardware rasterization pipeline is possible.

8.3.1 System Overview

The system presented in this section is targeted to provide a complete autonomous ray
tracer on a single chip. The host application is able to obtain a rendered image by just
providing camera settings and the scene description and issuing a start command. Upon
completion, the image can be read back from the FPGA or it can be directly transmitted
to the standard framebuffer for display, overlay over an image or for textured surfaces
created by the (triangle rasterization) graphics card.

In order to be as reusable as possible, the ray tracer is responsible for the scene han-
dling. The host application should not be burdened with preprocessing. The drawback
of this approach is, that the scene must fit in the local memory of the FPGA. This also
means that the ray tracer is not optimized for interactive frame rates. It must allow
rather general object descriptions as our goal is to demonstrate the general utility of the
FPGA technology for rendering high-quality images.

Hardware Layout

The ray tracer consists of four major building blocks as shown in figure 8.9:

➟ The ray generator reads the camera setup and screen resolution from the local

8.3 Ray tracing in hardware 123

Camera setup
General config

RAM Share

Geometry
Topology

RAM Share
32

Color
Encoder

Image
Assembler

Ray
Generator

P
ol

yg
on

Q
ua

dr
ic

Shade LogicTrace Logic

32

32

192

24 24

96

8

Intersection Calculation Modules

Output Image

RAM Bank 0/1

Figure 8.9: The overall chip layout of the FPGA ray tracer. The annotated numbers dis-
play the Bit-width of the busses.

RAM. It generates all primary rays for one frame and sends them down the render-
ing pipeline channel. The generator also applies some normalization transforma-
tions and consistency checks to the camera setup. Upon completion of the frame,
the generator immediately loops and reads the camera setup for the next frame.

➟ The tracing and shading logic is the core part of the ray tracer. It consists of a
general skeleton algorithm that represents the program flow common to all ray
tracers. It has associated modules that perform the specific tasks of intersection
calculation and shading for some specific object or surface type.

➟ The color encoder reads one pixel at a time in the internal pixel format and con-
verts it to some common representation. We currently support RGBα and YUV.

➟ The image assembler places the data obtained from its input in the appropriate
local framebuffer location on the local RAM. Because transferring a completed
frame to the host or to the graphics card also takes a fair amount of time and
requires to be able to lock the transfer buffer, the image assembler uses double-
buffering to ensure good throughput: Upon completion of one frame, the image
assembler releases the buffer and signals the event to the host. Now the buffer can
be transferred while the second one is assembled.

The subsystems are coupled by synchronous peer-to-peer busses (see below). Each
subsystem operates independently and loops indefinitely. The synchronization with the

124 Rendering

host application is done indirectly by the image assembler: It will block until the host
clears the buffer-ready signal of the buffer in question. This in turn will halt the preced-
ing subsystems output until the pipeline is completely filled up.

The ray generator, the color encoder and the image assembler subsystem are straight
forward implementations that process one request at a time. The tracing and shading
logic implements a skeleton algorithm for intersection testing and shading. It uses small
modules that actually perform the intersection calculation for a specific object type. As
the processing of one depth-step of a ray involves several intersection calls for the pri-
mary and secondary rays, the tracing and shading logic takes advantage of running
several modules in parallel. Note that this means true parallelism in terms of replicated
hardware. In the following pseudocode for the tracing and shading logic, parts marked
by par

�
... � are executed as parallel threads. The statement following these blocks

is executed not until all threads have finished. Parts marked seq
�
... � will execute

sequentially.
Note that the proposed architecture has no scene traversal unit. In order to make

use of advanced acceleration structures, such a subsystem is necessary. This currently
prohibits the use of the FPGA ray tracer for rendering large scenes and explains the
slow rendering times for moderately complex scenes in section 8.3.3. Advanced scene
traversal has not been implemented because of the limited chip surface.

Internal Communication

The major subsystem blocks of the ray tracer communicate over several synchronous
busses, called channels. In figure 8.9, the channels are drawn as thick lines. The at-
tached numbers show the width of the bus in Bits. A channel supports bi-directional
communication.

The channels serve as a means of decoupling the subsystems. Each part can run inde-
pendently. Because all subsystems share the same clock signal, the overall performance
of the ray tracer is only limited by the slowest subsystem, which is the one that needs
the largest number of clock cycles N to complete one request. Because of the pipeline
structure of the whole system, the ray tracer can produce one pixel every N clock ticks
after an initial delay of 4 � N clock cycles to fill the pipeline. Note that the clock rate of
the chip therefore does not match the output frequency of the processing channel. The
main layout therefore is not a pipeline, strictly speaking (� section 2.2).

As accessing local memory on the PCI card can be done only once per clock cycle,
multi-ported on-chip RAM registers are used to prefetch data or to store intermediate
results. The RAM also can be accessed only once per clock cycle, but multiple RAM reg-
isters can be accessed in parallel. The local memory on the PCI card in contrast provides
only four banks that can be used in parallel. The algorithms have been examined care-
fully to understand at which instant certain data is accessed and prefetching from the
local RAM registers has been implemented, so a complete data structure can be read in a
single clock cycle by the algorithm when it is needed. The prefetch has been determined

8.3 Ray tracing in hardware 125

object
quadric

object
polygonal

192

ray tracing and shading logic

intersection calculation modules

32

96

Figure 8.10: Calculation of intersection point and surface normal is modular. The anno-
tated numbers display the Bit-width of the busses.

experimentally and is written explicitly directly in the algorithm. Simple data structures
like vertex positions are stored by using a different memory bank for each dimension
and can therefore be read in a single clock cycle at any time.

As the tracing and shading logic implements only the basic skeleton algorithms, it
provides uni-directional busses for communication with modules that provide intersec-
tion and surface normal calculation. Figure 8.10 shows the busses with their Bit-widths
attached. For each primitive supported, there is a special module that can provide the
requested information. Note that the modules are independent of each other and there-
fore run as stand-alone engines. The pseudocode 8.3 connects a module with the tracing
and shading logic.

External Communication

The ray tracer can be controlled by the host application through a small set of com-
mands. A library that implements these commands has been written. It manages the
data transfer to the memory on the PCI card. The API concept is built after the OpenGL
state machine: The camera setup of the ray tracer is done similar to camera setup in
OpenGL and defining the scene to be rendered is similar to defining an OpenGL dis-
play list. There are state variables for modifying certain properties of the ray tracer,
especially for starting and stopping rendering. The library translates all configuration
settings and uploads the data to the appropriate RAM locations on the PCI card.

126 Rendering

The API also features commands for defining where the output of the ray tracer
should go. Normally, the library stores the rendered image internally. It can be queried
by the host application at any time. Alternatively, the library can set up a DMA trans-
fer directly from the FPGAs PCI card to the graphics card. The transfer is executed
automatically as soon as the FPGA has completed one image by using the PCI bus mas-
tering capability of the card. This concept makes the FPGA ray tracer a valid graphics
co-processor that effectively takes work-load off the main CPU.

8.3.2 Implementation

The ray tracer has been developed using Celoxicas Handel-C [Cel01] hardware pro-
gramming language. It is a high-level language with a strong resemblance to C.

The program is translated into an intermedi-

Clock

FPGA

8 MB SRAM

PCI−PCI
Bridge

PMC PMC

PCI

Bridge

32

32

32

32

3232

32

Figure 8.11: The FPGA is mounted
on a PCI card with I/O Controller
and 8 MByte local memory.

ate format which can be compiled to obtain code
that runs within a simulator, or it can be converted
into a netlist in EDIF format. The FPGA manufac-
turer Xilinx [Xil01b] provides place and route tools
to create the final bitmap image from the netlist.
The bitmap is then uploaded to the FPGA from
the host application to actually program the chip.
This process does not involve creating VHDL. Al-
though some performance loss may be associated
with this approach, it has a much steeper learning
curve for computer graphics people.

The Handel-C language supports both replica-
tion and parallelization of code for running sev-

eral instances of one thread in a way that is relatively easy to control and synchronize.
The internal communication channels of the ray tracer make heavy use of these con-
cepts.

As shown in figure 8.11, the FPGA is mounted onto a PCI card that is equipped with

G
page 145

8 MByte of SRAM. Both the host and the FPGA can access the RAM in 32 Bit word-size
address mode. The integrated PCI bridge provides functionality for locking the RAM
and can act as bus-master on the host PCI bus. The RAM supports transfer rates up to
25 MHz. It is organized into four banks, so the theoretical maximum transfer volume
is 4 � 25MHz � 32Bit � 400 MByte

sec . While this is valid for the FPGA, the host commu-
nication must pass through the PCI bus, which has a theoretical peak performance of

� 133 MByte
sec . The communication volume with the host application therefore needs to

be kept at a minimum. Currently, dynamic loading of scene parts from the host is not
supported. The scene to be rendered has to fit into the PCI card RAM.

8.3 Ray tracing in hardware 127

Numerical Issues

In order to make programming and reuse of existing algorithms easy, the ray tracer
accepts input values in the standard IEEE 754 single-precision floating point format.
Furthermore it uses floating point calculus for most of its internal algorithms. Although
this sounds very attractive, there are several problems associated with it.

Floating point calculations cannot be executed directly, as the FPGA has no dedi-
cated floating point units. The basic arithmetical operations of signed addition and sub-
traction, multiplication, division, square root, float to integer and integer to float conver-
sion have to be encoded explicitly. Although this is true for pure integer arithmetic too,
encoding the algorithm of the operation can be done using considerably less CLBs of the
FPGA compared to their floating point counterparts. This results in smaller circuit de-
lays for the operation in question, which in turn defines the limiting frequency at which
the circuit can operate correctly. One standard approach to obtain higher operating fre-
quencies is to break down the operation into simpler steps and pipeline them. This how-
ever in turn will increase the number of CLBs that are necessary. The basic arithmetic
floating point routines therefore use a large portion of the chip surface, because in order
to execute higher-level numerical routines in parallel, there must be several instances of
each of them. The implementation of the FPGA ray tracer has 6 multiply, 2 divide and
12 add engines that are used by all parts of the pipeline in a coordinated manner.

8.3.3 Results

The system is based on a consumer 1200 MHz Athlon PC with nVIDIA GeForce 3 Ti200
graphics card running a Linux 2.2 kernel. We use a Xilinx Virtex 2000E FPGA chip
[Xil01a] that supports operating frequencies up to 100 MHz. It is mounted on a PCI
card as described in the previous section. Uploading a FPGA programming image and
personalization of the chip takes about 150 ms.

For the external communication, bus master DMA transfers are used. On the test
system, transfer rates of 49 MByte

sec for reading from the PCI card and 38 MByte
sec for writing

to it have been measured. Direct transfers to the framebuffer of the main graphics card
provide 50 MByte

sec of bandwidth. This is enough for displaying 1024 � 768 pixels at 16
frames per second in RGBα-mode. Thus, the transfer of the rendered images does not
present a bottleneck at current.

Figure 8.12 shows the rendering of a quadric test object. The image is 200 � 200 pixel
and displays at � 0.7 frames per second. It employs two directional light sources, classic
Phong shading, recursion depth 1 and no transparency.

The ray tracer supports polygonal objects with up to 140 faces and 3 or 4 vertices
per face. The face polygons may be concave. As the scene has to fit into the RAM, the
scene size is limited to 1024 polygonal objects. For demonstrating the rendering of an-
alytical surfaces, the ray tracer also supports quadrics of order 2. A quadric is defined
by Ax2 � Bxy � Cxz � Dx � Ey2 � Fyz � Gy � Hz2 � Jz � K � 0 and can therefore be

128 Rendering

stored within 10 floats. This allows more than 52000 quadrics to be stored in the RAM.
Because of the general nature of the ray tracer implementation using floating-point
arithmetic and the demand for high numerical performance when rendering quadrics,
we use 94% of the FPGA resources (”slices”). The missing scene traversal unit leads to
slow rendering times even for moderately complex scenes. The teapot scene (128 poly-
gons) in figure 8.13 takes � 2 minutes as does the 5 quadric scene because the quadric
intersection module has a much longer latency because of the numerics involved.

Figure 8.13: A polygonal teapot and a quadrics scene rendered with the FPGA ray tracer.

Color plate B.4(a) shows the routed layout of the ray tracer with selected connections
of the ray generator subsystem in red color. The main connections and the intersection
module channels of the tracing and shading logic are marked in green. Note how the
modular concept also helps the place and route tools to optimize path lengths and lo-
calization of resources. On the right hand side, figure B.4(b) shows a visualization of
the degree of local connectedness of the CLBs of the FPGA. Again, the two subsystems
are clearly distinguishable. The color encoder and the image assembler subsystem are
straight forward implementations that have not enough complexity to show up.

Because of the highly complex floating-point arithmetic, our implementation has a
rather deep nesting of circuits. The maximum depth is 61 logic levels and requires a
chip clock delay of � 140 ns. This limits the maximum operating frequency to 7 MHz.
The set of floating point macros provided by Celoxica is suboptimal and turned out
to be the limiting resource of the ray tracer. They compute the floating-point operation
within one clock cycle at the expense of very deep nesting. However, for production
code, there exist other commercial floating point cores [NL01] with very high efficiency
both in terms of function performance and space requirements. They are implemented
as pipelines with shallow logic and offer operation frequencies of up to 165 MHz.

8.3 Ray tracing in hardware 129

The ray tracer concept presented in this section is rather general. It therefore can
serve as a basis for several rendering tasks. Much higher framerates are possible by
restricting the object descriptions to simpler primitives like spheres and triangle lists.

The FPGA layout is kept intentionally as mod-

Figure 8.12: The quadric test scene
(� color plate B.3(a)).

ular as possible to enable processing in a pipelined
fashion, easy maintenance and using it for educa-
tional purposes. As each module obtains its input
from channels and sends it output to other chan-
nels, it is easy to write a small test framework for it
for debugging purposes. Using the FPGA simula-
tor provided by the Celoxica IDE, the channels can
be attached to files on the harddisk which makes
examination of the results with third-party tools
easy. The module concept offers a further privi-
lege: Many FPGA circuits support partial config-
uration and read-back. One can take advantage of
that for exchanging the intersection and surface
normal calculation modules at runtime without
destroying all the state information in other mod-
ules that would occur when performing a chip
personalization, i.e. a complete reconfiguration by uploading a whole FPGA netlist im-
age.

In color plate B.3(b), a sample application of the ray tracer for generating a high-
quality mirror image has been implemented. The ray traced image is put into a texture
which is applied to a quadrilateral within the test scene that is rendered using OpenIn-
ventor.

130 Rendering

T_and_S {
while (true) {
par {
seq {
sRay = reflect(last_ray,last_t,last_n);
for (allObjects) {
num = intrCh.select(moduleList[pRay.primType]);
par(num) {
intrCh.send(sRay);
s = intrCh.param();

}
(s > 0) ? color=shade(last_ray,last_t,last_n);

}
outputCh.send(color);

}
seq {
pRay = inputCh.waitfordata();
for (allObjects) {
num = intrCh.select(moduleList[pRay.primType]);
par(num) {
intrCh.send(pRay);
t = intrCh.param();
n = intrCh.normal();

}
(t > 0 && t < min_t) ? min_t=t; min_n=n;

}
par {
last_ray = pRay;
last_t = min_t;
last_n = min_n;

}
}

}
}

}

Listing 8.2: Pseudocode for the tracing and shading logic of the FPGA ray tracer.

8.3 Ray tracing in hardware 131

intersectObj {
while (true) {

resetLocalState();
ray = intrCh.waitfordata();
... algorithm goes here ...
intrCh.setParam(t);
intrCh.setNormal(n);
intrCh.release();

}
}

Listing 8.3: Pseudocode for an intersection module of the FPGA ray tracer.

132 Rendering

Part IV

Conclusion

9
SUMMARY

Mit dem Wissen wächst der Zweifel.

— Johann Wolfgang von Goethe

Numerical simulation and scientific visualization and rendering are complementary
tools for modern fluid dynamics research. The size of the result data and the com-
paratively limited external bandwidth of current high performance supercomputers
strongly suggests integrated processing. Application developers are therefore faced
with many requirements the program has to meet to deliver performance that can be
rated as adequate compared to the theoretical capabilities of current hardware. This the-
sis contributes a classification of distribution and parallelization strategies for scientific
high-performance computing and demonstrates their usage with several implementa-
tions.

The first part of this thesis presented a categorization of several complementary
strategies for distribution and parallelization that attack the problem on different levels.
The strategies have been examined and evaluated within several implementations. For
building a supporting framework for distribution and parallelization for application
developers, a combination of the presented strategies must be used. The coarse-level
strategies lay the foundation for distributed computing. As they follow a specific dis-
tribution concept, they get deeply embedded into the application logic. The decision
for using the one or the other strategy depends on latency, bandwidth and bridgeable
distance the application has to cover.

For writing effective algorithms, the intermediate strategies provide a simplified
view of the underlying hardware to the programmer. As these strategies are to be used
in conjunction with the coarse-level strategies, they concentrate on parallelization of
more or less local algorithms. To this end, they emphasize the importance of data han-
dling and collaboration of internal parts of the application. In contrast to the coarse-level
strategies, they never interfere with the application or distribution logic. They are ab-

136 Summary

straction tools for program development and maintenance.
The fine-level strategies deal with efficiency aspects. They heavily depend on data

structures and processing operations. They are not specific to a certain application, but
provide general tools for exploiting current hardware capabilities. Because of the archi-
tecture of current computer systems, their use is inevitable if progress in future proces-
sor development should be utilizable by the application or library.

The second part of this thesis presented the integrated simulation, visualization
and rendering framework library gridlib that has been implemented for evaluating the
above strategies. The gridlib is an outstanding contribution to supercomputing, as it
delivers the enabling technology for efficient handling of grand-challenge problems. It
provides an object-oriented software infrastructure for common grid-based numerical
simulation problems on unstructured, hybrid grids. At the same time, it abstracts from
the underlying hardware details. Its three-tier architecture provides generalized mem-
ory handling that can be customized for third-party simulation codes, object-oriented
abstraction of geometry elements, edges and vertices and a mesh container that serves
as central access point to a set of elements, edges and vertices that form a grid. The
mesh container also explicitly supports algorithmic abstraction and computation ser-
vices. For the application developer, the gridlib offers high-level client subsystems for
common tasks like I/O, visualization and graphical display. The functionality of the
subsystems can be used to implement new high-level object-oriented simulation codes.
In section 5, an overview of applications using the gridlib was given. Using the services
and grid management functionality, their development time was very short. Thanks to
the features of the gridlib , all applications are portable without special precautions of
the programmer.

The third part of the thesis presented several new contributions to distributed and
parallel computing. Most of the applications that have been implemented for evaluat-
ing the distribution and parallelization strategies are built on the gridlib framework
because of its integration functionality on supercomputers and desktop systems alike.

The distributed lighting networks system (� section 8.1) examined the possibility
of applying the coarse distribution strategy of CORBA to build a distributed frame-
work for an existing rendering system without interfering with the application logic.
The only requirement was that the existing subsystem decomposition must allow sepa-
ration of address spaces. Using multiple layers of wrapping objects allowed to distribute
objects and parallelize computation through subsystem replication transparently to the
developer of the actual computation classes. This sets the distributed lighting networks
system apart from other parallel ray tracing applications that embed the distribution
logic deeply into the core classes, which is therefore highly visible to the programmer.
In section 8.2, the opposite approach was taken for building a high performance parallel
rendering subsystem. The whole design has been dedicated to the coarse distribution
strategy MPI for obtaining maximum data transport performance. It is available as a
high-level client subsystem within the gridlib framework. It allows the generation of
images of intermediate solutions of a running simulation at virtually no cost. Both im-

137

plementations demonstrate the flexibility of the coarse strategies and emphasize at the
same time the programming effort necessary for employing them efficiently.

Sections 7.1 and 7.2 examined intermediate distribution and parallelization strate-
gies to verify the promised advantages. Like it has been pointed out, the strategies do
not interfere with the application logic but offer better flexibility and parallel operation
for the programmer. They are valuable tools to enhance the efficiency of the application.
The interactive 3D stream player presented in section 7.1 is the first working tool for in-
teractive rendering of time-depended scalar volumes for an unlimited number of time
steps. It benefits from the abstraction introduced by the pipeline strategy that allows
to exchange a module implementation if hardware resources can be exploited. The lo-
cal exact particle tracing method presented in section 7.2 leverages previous theoretical
work to a useful visualization tool thanks to sophisticated parallel pre-processing using
the OpenMP strategy.

The fine-level strategies have been studied in section 6.1 and 8.3. Both applications
are examples to show the general potential of the strategies. While SIMD processing is
already available on most PC architectures, the FPGA hardware approach needs addi-
tional support from hardware manufacturers to become common practice in the future.
Both examples show the importance of considering fine-level strategies when designing
an application that should be able to use nowadays available hardware efficiently.

Pure high level language program optimization fails to exploit current hardware
capabilities because of weak compiler optimization engines and assembler backends
that lack the extended processor instruction sets. The examined Lattice Boltzmann flow
solver application demonstrates how SIMD instructions can be utilized without dete-
riorating the programming patterns of the high level language. The achieved results
present a speedup factor of three without changes to the hardware or the high level
program.

The presented autonomous FPGA ray tracer is the first complete and working single-
chip solution on low-cost hardware without expensive additional floating point units.
Recent developments with PC graphics cards also point in this direction and make the
developed FPGA ray tracer a valuable first proof of concept for future applications of
programmable graphics hardware.

138 Summary

10
FUTURE CHALLENGES

Why waste time learning
when ignorance is instantaneous ?

— Hobbes

10.1 Integration of functionality

Like it has been pointed out in section 4.1, nowadays problem sizes in technical sim-
ulation demand huge computing facilities. The strategies that have been presented in
this thesis show the possibilities of integrating simulation, visualization and rendering,
which is essential to bridge the gap between local memory resources and bandwidth of
external communication channels.

The crucial point that must be considered for future research therefore is to examine
the compatibility of data structures for simulation and visualization, their adaptability
and performance for a given hardware environment. Shareable distribution and paral-
lelization models must be investigated and implemented as library functionality that is
transparent to the application developer. For achieving good levels of abstraction within
such large frameworks and applications, compilers for object-oriented programming
languages must be implemented on supercomputer machines, which is not the usual
case nowadays. Successful integration of simulation, visualization and rendering will
become one of the key points on such architectures, because none of these disciplines
will be able to deliver adequate processing times when implemented and optimized on
its own.

10.2 Flexible SIMD processing

The encouraging results for SIMD processing for Lattice Boltzmann methods, as pre-
sented in section 6.1, should be exploited for other technical simulation codes. Future

140 Future Challenges

research therefore should investigate the SIMD parallelization potential of the code in
question. Especially codes operating on structured grids are good candidates for this
strategy.

Simulation codes for unstructured grids offer conceptual much less opportunities
for SIMD processing because of the varying neighborhood information that has to be
computed explicitly. However, the major part of the SIMD performance comes from the
ability of the processor to access the fast caches efficiently. As enlargement of the caches
is too expensive and the main memory access speed will stay limited for current archi-
tectures, Intel has proposed to leverage the processor performance by hyper-threading
[Int02]. This can be understood as SPMD processing on a single CPU, because the pro-
cessor is not limited to perform exactly the same instruction at the same time as with
the SIMD concept, but executes the code independently like multiple CPUs with the
advantage of a shared cache. This technology can help tremendously with performing
simulations on unstructured (potentially hybrid) grids, as multiple neighboring cells
can be processed in parallel while efficiently using the cache. The functionality of hyper-
threading can be made available transparently to the programmer, by integrating it into
an OpenMP implementation.

10.3 Integrated FPGA technology

Because the ray tracing concept has been studied for quite a while now, there is a huge
amount of different algorithmic approaches and optimizations for each of the subtasks.
However all of them have been evaluated as software implementations. In order to cat-
egorize and analyze the performance potential, their applicability to hardware imple-
mentation must be thoroughly investigated. The FPGA-based ray tracer presented in
section 8.3 does not implement any acceleration technique other than trivial bounding
box calculations. This is directly related to investigations in integer-based algorithms
and precision considerations, as this will free chip resources occupied by the complex
floating point macros. The liberated space can then be used for an advanced scene
traversal unit to get decent rendering speed for moderately complex scenes.

Further acceleration of the ray tracer through image-based approximation tech-
niques must be investigated. The holodeck [Lar98] technique for example produces
a new image by manipulating the previous image and complementing it with newly
traced rays in critical regions. However this may give noticeable artifacts and it will de-
mand additional FPGA surface and RAM for the image-based part. Also asynchronous
communication of subsystems must be investigated to account for the different algo-
rithmic complexities, as modern FPGA chips support more than one clock domain.

The main future challenge of course is an integration of programmable FPGA chips
on consumer graphics cards. They would complement the high speed rasterization op-
erations with custom programmable data processing. The recently introduced nVIDIA
GeForce 3 chip set and its successor GeForce 4 already have some basic programmable

10.3 Integrated FPGA technology 141

data manipulation functionality for the autonomous keyframe interpolation feature of
the vertex shader [NVc] concept. The FPGA ray tracer then would have a direct con-
nection to the framebuffer RAM, which presents the ideal opportunity to use it as a
high-quality texture generator. The game industry would also profit from it as it would
allow a much more flexible creation of 2D effects than current concepts like the pixel
shader. Furthermore, the FPGA will profit from the better performance of the AGP bus
host connection. Hybrid rendering techniques like proposed recently by Stamminger et
al. within their corrective textures [SHSS00] walk-through system will benefit from this.

142 Future Challenges

Part V

Appendix

A
GLOSSARY

ACE The adaptive communication environment library, � section 1.3.1.

barrier
synchronization

A synchronization point is inserted into the program. For the barrier, all pro-
cesses of a group reaching this point are halted there. When the last process of
the group reaches the point, all processes resume. For a mutual exclusive (mu-
tex) synchronization, only one process is allowed to enter the synchronization
point at a time.

binding of
implementations

If a function is called as a subroutine, only the parameters, the return value
and the starting address of the subroutine need to be known to the caller. This
can be exploited for delaying the actual implementation of the subroutine. If
the starting address and the parameter information is reserved for the subrou-
tine, the code for its implementation can be loaded and bound to the starting
address on-demand.

broadcasting These are collective communication operations (� section 1.2.2) that occur fre-
quently in parallel and distributed programs. Consequently, communication li-
braries like � MPI offer optimized system calls for them. Broadcasting copies
one variable to all participating processes. Gathering collects the variable’s val-
ues from all processes, computes a result from all received values and stores it
with the initiating process. The reduction operation that is performed can be
configured. The scattering pattern distributes the components of a local vector
to all processes such that each process gets some configurable part of the vector.

cache A memory cache is a small piece of high speed memory that is often clocked at
the same frequency than the processor I/O channels. This makes it extremely
expensive, but allows the processor to quickly load its registers. When access-
ing some data in main memory, a whole cache line is loaded into the cache,
because the probability that the processor will access adjacent memory loca-
tions is good. Writing cache-aware algorithms therefore needs to account for
data locality, so the majority of the operations will not request additional cache
lines, which would force the cache to write and read from main memory per-
manently, destroying the speed advantage.

146 Glossary

ccNUMA cache coherent NUMA � NORMA

compiler pragmas Nearly every high-level compiler consists of several processing steps. The first
step is a pre-processor that is responsible for collecting all source code neces-
sary for the current translation unit. The second step is the code translator, that
builds an abstract syntax tree which is encoded into executable binary format
by the third step. Pragmas are compiler control instructions in the source code,
that are not removed by the pre-processor and therefore can control the actual
code translator engine.

CORBA Common Object Request Broker Architecture � OMA

endianess Because of internal design of the processor circuits, the binary representation
of integer values can be different. The endianess describes the position of the
most significant Byte (MSB) within multi-Byte integer variables. Big-endian
machines store the MSB first, little-endian machines store it last.

event
de-multiplexing

Events arriving on a single channel are identified and separately forwarded to
the appropriate recipient.

gathering � broadcasting

IDL Interface Definition Language � ORB

interoperability The ability of implementations of a communication library from different man-
ufacturers to work together.

IOR Interoperable Object References � ORB

lightweight classes In object-oriented languages, a class encapsulates both data and functions into
a unique object. Inheritance plays an important role for declaring class rela-
tions. However, everything that is added to a class declaration complicates
the storage layout of the implementation. A lightweight class has only data
members and no inheritance relation. It may have some simple (inline) access
methods. Its memory layout therefore is exactly the concatenation of its data
members.

mesh subdivision Each element of a mesh can be refined into multiple smaller elements of the
same type or of other types. This subdivision process can be performed on all
elements (uniform) or only on some elements (adaptive). In the case of adaptive
refinement, hanging nodes need to be corrected to get a new correctly closed
mesh.

middleware Library that builds an abstraction of some underlying service, but is not in-
tended to provide end-user functionality, � CORBA section 1.3.2.

MIMD multiple instruction, multiple data � SISD

MISD multiple instruction, single data � SISD

MPI The Message Passing Interface library is the most prominent representative for
distributed supercomputer applications, � section 1.2.2.

147

mutex
synchronization

� barrier synchronization

NORMA no remote memory access; Variations of the � MIMD architecture class de-
scribing supercomputer hardware available today (� introduction to part
one).

NUMA non uniform memory access � NORMA

object retention In a distributed environment, it may be advantageous not to destroy remote
objects immediately after the client has dropped the reference on the object.
The � CORBA standard allows to keep the server object and reuse it for further
invocations. This behavior is controlled and configured by a system service.

OMA Object Management Architecture; Definition and implementation of an object-
oriented � middleware communication library, � section 1.3.2.

OMG Object Management Group � OMA

ORB The Object Request Broker. Part of the � CORBA communication library.

parallel file systems In order to amend the disk I/O throughput, the data is written to multiple
harddisks simultaneously by the file system. Each disk holds a fraction of the
files (“file-striped”) or a fraction of the data of each file (“block-striped”).

portal culling When rendering a partial view of a scene, some objects may be totally outside
the viewing frustum. They are removed (“culled”) from further processing. The
same can be done with parts of the scene that are visible only through a small
window in some geometry. This portal obscures all geometry that lies behind
its limiting walls. Therefore, portal culling can considerably reduce the number
of objects to render.

processor
instruction

In order to build a generally useful programmable active device, a processor
is structured into several parts (� von Neumann architecture). The processor
instructions therefore contain besides arithmetic operations also control com-
mands for data flow, signaling for subsequent parts and error conditions and
special internal operations like register-based SIMD operations. As the proces-
sor has to orchestrate the collaboration of all these parts, many clock cycles are
needed that cannot be used for the actual numerical operations.

processor
instruction pipeline

As the processor repeatedly fetches the next instruction from memory and ex-
ecutes it, this process is implemented as a (at least) three stage pipeline. The
three parts run independently and therefore allow the processor to execute one
complete operation within one clock cycle on average. The pipeline is split in
instruction fetching, instruction decoding and execution. Most often, an addi-
tional branch prediction unit allows to keep the pipeline filled even if there are
conditional jumps in the code.

148 Glossary

programming
design pattern

When working with large object-oriented systems, many programming pat-
terns are recurring regularly. The standard approach to solve such problems is
to employ design patterns that are classified according to scope and purpose
[GHJV95]. Using such a pattern is highly recommended, as they are proven
concepts, offer well known semantic and pragmatic aspects, complexity and
limitations.

PVM The Parallel Virtual Machine communication library offers the master–slave
collaboration model, � section 1.2.1.

reentrant
implementation

The implementation can be executed by several processes simultaneously with-
out side effects.

scattering � broadcasting

shear-warp For rendering 3D voxel data using 2D texture slices, the rays casted at the vol-
ume pass it in some specific angle respective to the front face. In order to trace
straight rays, the texture slices are stretched and sheared, and the resulting im-
age is warped to the image plane. This gives the same result as tracing the rays
at specific angles through the volume, but can be implemented much faster.

SIMD single instruction, multiple data � SISD

SISD single instruction, single data; Classification of parallel computer architectures
according to Flynn [Fly72] dependent on data streams and available � proces-
sor instructions (� introduction to part one).

SPMD single program, multiple data; Variation of the � SIMD architecture class with
the relaxation that the simultaneous code execution is performed on the pro-
gram level, not on processor instruction level (� introduction to part one and
section 1.2.2).

strong typing High level programming languages assign a unique type to each data structure
or object. The validity of applying an operation or accessing internal structures
can only be checked, if the type information cannot be hidden or counterfeited
by the programmer. Strongly typed languages like C++ enforce this automati-
cally, while compiler for weakly typed languages leave it to the responsibility
of the programmer.

TAO The ACE ORB � OMA

UMA uniform memory access � NORMA

von Neumann
architecture

The concept of a universal computer has been introduced by Burks, Goldstine
and von Neumann in 1946 [Kla89]. The architecture of the system is structured
into four functional blocks: the control, arithmetic, memory and I/O unit. In
order to process an algorithm, a sequence of � processor instructions are de-
coded and forwarded to the corresponding functional block by the control unit.
The program is fetched from the memory unit. Branching instructions enable to
build non-linear instruction sequences. The control unit has access to internal
state of the other functional blocks. Branching can therefore be conditional. In
order to allow higher level processor instructions, the control unit can execute
micro-programs.

149

Z-buffer When a triangle is rasterized into a framebuffer, the Z-values of the projected
pixels are stored in the Z-buffer. Deciding whether a pixel should be drawn
over an existing pixel then is simple by comparing the new Z-value to the
buffer content. Because the Z-buffer algorithm is very simple, it is implemented
in hardware.

150 Glossary

B
COLOR PLATES

(a) (b) (c) (d) (e) (f)

Plate B.1: The rendering subsystem has several rendering modes for close examination
of detail or interactive rendering of general shape. The images above show a partitioned
dataset. Each partition can be turned on/off independently. Each mode or a combina-
tion of modes can be applied to each partition separately: (a) surface (b) surface faces of
adjustable size (c) faces of any boundary (d) surface of partition (e) volume elements of
adjustable size (f) double-sided with greyed-out back faces

152 Color Plates

(a) (b)

(c) (d)

Plate B.2: Examples of possible direct visualization: (a) an airplane with color-mapped
density slice and pressure isosurfaces, (b) the space shuttle with air velocity mapped
by direct volume rendering, (c) an electrostatic simulation showing some special scalar
value as an isosurface and a color-mapped slice through the unstructured simulation
grid, (d) is the same dataset now with a simulation of heat dissipation by direct volume
rendering. The data set is cut open by clipping planes.

153

(a) (b)

Plate B.3: Figure (a) shows a single quadric which renders at 0.7 frames per second.
Figure (b) is a snapshot of an application where the output of the ray tracer is put into
texture memory for display as a mirror image within a rasterized scene.

(a) (b)

Plate B.4: Image (a) shows the routed layout of the ray tracer with selected connections
of the ray generator subsystem in red and the main connections and the intersection
module channels of the tracing and shading logic in green. Image (b) shows a visualiza-
tion of the degree of local connectedness.

154 Color Plates

radiosityfinite element discretizationsum of direct illumination

Host 2

Host 1

photon mapsray tracing

Host 3

indirect illumination
sum of direct and

Plate B.5: Data flow and intermediate results computed by a distributed lighting net-
work performing direct, indirect and caustic illumination through different LightOps.

155

(a) (b)

Plate B.6: High-quality visualization using the local exact integration method for parti-
cle tracing. In (a), the trajectory is rendered with OpenGL. The smooth ray traced curve
in (b) is colored differently in every segment computed.

(a) (b)

Plate B.7: Progressive transmission of a dataset. The isosurface visualization is coupled
to the progressive grid and therefore also progressive. Image (a) shows the coarsest
level, image (b) the final refined result.

156 Color Plates

Plate B.8: Shuttle in the wind tunnel computed with the local exact method.

Plate B.9: Visualization of tetrahedra quality: red ones are bad.

157

Planar slices. Scalar values can be mapped onto the slice using a color table. The
table can be modified interactively.

Contour lines on a planar slice. The lines are generated as true geometry and there-
fore display in correct perspective. The iso-value of a line is annotated.

Direct volume rendering by regular resampling. The voxel volume can be rendered
with hardware support. Interactive color table mapping and gradient shading for
visualization of tiny structures and isosurfaces is available.

Isosurfaces of any scalar value. The surface can be shaded for good spacial impres-
sion or another scalar value can be mapped onto it using an interactive color table.

Table B.1: The gridlib offers several visualization algorithms for displaying simulation
results.

158 Color Plates

Plate B.10: Progressive isosurface extraction, from left to right using 5%, 10%, 16% and
30% of the original number of elements of the dataset.

Plate B.11: Left: Fast isosurface extraction on unstructured grids. The concentric sur-
faces represent a specific iso value over time. Right: Visualization of a magnetic field
simulation.

C
INTERFACE INHERITANCE IN gridlib

GoDefaultVertex

GoFlowVertex GoScalarVertex

GoVertex< float >

GoVertex< T >

< float >

GoBoundaryFlowVertex GoMechatronicVertex

Figure C.1: Inheritance diagram for gridlib vertices.

$classGoFlowVertex.html
$classGoScalarVertex.html
$classGoVertex.html
$classGoVertex.html
$classGoBoundaryFlowVertex.html
$classGoMechatronicVertex.html

160 Interface inheritance in gridlib

GoFlowEdge

GoDefaultEdge

GoEdge< float >

Figure C.2: Inheritance diagram for gridlib edges.

GoDefaultElement

GoHexahedronElement

GoOctahedronElement

GoPrismElement

GoPyramidElement

GoQuadElement

GoTetrahedronElement

GoTriangleElement

GoGeometryElement< float >

Figure C.3: Inheritance diagram for gridlib geometry elements.

$classGoDefaultEdge.html
$classGoEdge.html
$classGoHexahedronElement.html
$classGoOctahedronElement.html
$classGoPrismElement.html
$classGoPyramidElement.html
$classGoQuadElement.html
$classGoTetrahedronElement.html
$classGoTriangleElement.html
$classGoGeometryElement.html

161

GoFlowEdge

GoDefaultEdge

GoEdge< float >

GoEdge< T >

< float >

GoDefaultEdgeBase< float >

this_

GoDefaultEdgeBase< T >::DefaultEdgeMem

data_ GoDefaultEdgeBase< T >

data_

GbMemPool< DefaultEdgeMem >

pool_

poolMem_
headOfFreeList_

next_

pool_

GbMemPool< T >

< DefaultEdgeMem >

T

data_

GbVec3< T >

xyz
EPSILON

< float >

GbVec3< float >

normal_

ZERO
UNIT_X
UNIT_Y
UNIT_Z

< float >

Figure
C

.4:C
ollaboration

graph
for

gridlib
edges.

$classGoDefaultEdge.html
$classGoEdge.html
$classGoEdge.html
$classGoDefaultEdgeBase.html
$structGoDefaultEdgeBase_1_1DefaultEdgeMem.html
$classGoDefaultEdgeBase.html
$classGbMemPool.html
$classGbMemPool.html
$classGbVec3.html
$classGbVec3.html

162 Interface inheritance in gridlib

GoDefaultVertex

GoVertex< float >

GoVertex< T >

< float >

GoDefaultVertexBase< float >

this_

GoDefaultVertexBase< T >::DefaultVertexMem

data_ GoDefaultVertexBase< T >

data_

GbMemPool< DefaultVertexMem >

pool_

poolMem_
headOfFreeList_

next_

pool_

< float >

Figure C.5: Collaboration graph for gridlib vertices.

GoDefaultElement

GoGeometryElement< float >

GoGeometryElement< T >

< float >

GoDefaultElementBase< float >

this_

GoDefaultElementBase< T >::DefaultElementMem

data_ GoDefaultElementBase< T >

data_

GbMemPool< DefaultElementMem >

pool_

poolMem_
headOfFreeList_

next_

pool_

< float >

Figure C.6: Collaboration graph for gridlib geometry elements.

$classGoVertex.html
$classGoVertex.html
$classGoDefaultVertexBase.html
$structGoDefaultVertexBase_1_1DefaultVertexMem.html
$classGoDefaultVertexBase.html
$classGbMemPool.html
$classGoGeometryElement.html
$classGoGeometryElement.html
$classGoDefaultElementBase.html
$structGoDefaultElementBase_1_1DefaultElementMem.html
$classGoDefaultElementBase.html
$classGbMemPool.html

D
THE gridlib MESH INTERFACE

The mesh abstraction layer provides the most useful interface to clients. Here is a list
of methods and descriptions of the supported operations. The mesh interface is imple-
mented in the GoMesh class. See the source code documentation for details.

Task Functionality

Geometry element
handling

Adding and retrieving geometry elements (global ordering). Get the num-
ber of contained geometry elements. All methods offer constant time com-
plexity.

Edge handling Adding and retrieving directed edges (global ordering). Get the number
of contained edges. All methods offer constant time complexity.

Vertex handling Adding and retrieving vertices (global ordering). Get the number of con-
tained vertices. Get the geometry element or edge associated with a ver-
tex. Iterate over local vertices of a geometry element. All methods offer
constant time complexity.

Adjacency information Retrieve a list of geometry elements that surround an edge or vertex. Get
all edges emanating from or incident to a vertex. Get a list of vertices re-
lated to a specific vertex by an edge. All methods can be parameterized to
consider only items that have a specific flag combination set. All methods
operate on local neighbor information and therefore offer constant time
complexity.

Spacial extent Get the axis-aligned bounding box of the mesh. Get an oriented bounding
box containing all vertices or only vertices marked by a flag combination.
All methods offer linear time complexity.

Content information Querying the type of geometry elements in the container. Can be specific
for each element type or as general 2D/3D statement in constant time
complexity. Removal of unreferenced items in linear time complexity.

164 The gridlib mesh interface

Algorithmic support Methods for executing a given functor on all contained geometry ele-
ments, edges or vertices. Can be restricted to a specific subdivision level.
Computing of surface or vertex normals, reconstructing neighbor infor-
mation and creating edges from scratch. Consistent global renumbering
of all items in user-provided identifier field. All methods offer linear time
complexity.

Subdivision Get the number of subdivision levels. Perform adaptive subdivision ac-
cording to a provided oracle.

Bibliography

[ACG97] Rob Appelbaum, Marshall Cline, and Mike Girou. The CORBA FAQ, 1997.
http://www.cerfnet.com/ � mpcline/corba-faq/.

[Amd67] G.M. Amdahl. Validity of the single–processor approach to achieving large scale computa-
tion capabilities. AFIPS Conference Proceedings, 30:483–485, 1967.

[AMD00] Advanced Micro Devices (AMD). 3DNow! Technology Manual, 2000.
http://www.amd.com/us-en/assets/content type/white papers and tech
docs/21928.pdf.

[AMD02] Advanced Micro Devices (AMD). AMD Athlon Processor x86 Code Optimization Guide, 2002.
http://www.amd.com/us-en/assets/content type/white papers and tech
docs/22007.pdf.

[ART99] The AR250 - a new architecture for ray traced rendering. In Eurographics/SIGGRAPH work-
shop on graphics hardware - Hot topics session, pages 39–42. Advanced Rendering Techniques,
1999.

[Ben75] Jon L. Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[BK93] H.E. Bal and M.F. Kaashoek. Object distribution in Orca using compile–time and run–time
techniques. OOPSLA ’93 Conference Proceedings, 28(10):162–177, october 1993.

[Cel01] Celoxica Limited. The Handel-C programming language, 2001.
http://www.celoxica.com/products/technical papers/datasheets/DATHNC
002 0.pdf.

[CL93] B. Cabral and L. Leedom. Imaging Vector Fields Using Line Integral Convolution. In J. T.
Kajiya, editor, Computer Graphics Proceedings, volume 27 of Annual Conference Series, pages
263–270, Los Angeles, California, August 1993. ACM SIGGRAPH, Addison-Wesley Publish-
ing Company, Inc.

[CR98] A. G. Chalmers and E. Reinhard. Parallel and distributed photo-realistic rendering. SIG-
GRAPH Course Notes - Course 3, july 1998.

[Cro98] Thomas W. Crockett. Parallel rendering. In SIGGRAPH ’98 ”Parallel Graphics and Visualiza-
tion Technology” course #42 notes, pages 157–207. ACM, July 1998.

[CS98] Chris Cleeland and Douglas C. Schmidt. External Polymorphism — An Object Struc-
tural Pattern for Transparently Extending C++ Concrete Data Types. C++ Report Magazine,
September 1998. http://www.cs.wustl.edu/ � schmidt/C++-EP.ps.gz.

[DHH
�

00a] C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Rüde, and C. Wei. Portable memory
hierarchy techniques for PDE solvers: Part I. SIAM News, 33(5), june 2000.

166 BIBLIOGRAPHY

[DHH
�

00b] C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Rüde, and C. Wei. Portable memory
hierarchy techniques for PDE solvers: Part II. SIAM News, 33(6), july 2000.

[FK97] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 11(2):115–128, 1997.

[Fly72] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, 21(9), september 1972.

[Frü94] Thomas Frühauf. Interactive visualization of vector data in unstructured volumes. Comput-
ers and Graphics, 18:73–80, 1994.

[GBD
�

94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine — A User’s Guide and Tutorial for Networked Parallel Computing. MIT Press,
1994.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley, Reading, MA, first edition, 1995.

[Gil93] W. K. Giloi. Rechnerarchitektur. Springer Verlag, second edition, 1993.

[GKLT00] G. Greiner, P. Kipfer, U. Labsik, and U. Tremel. An object oriented approach for high per-
formance simulation and visualization on adaptive hybrid grids. In Proceedings SIAM CSE
Conference, Washington, 2000.

[GLFK98] Andrew S. Grimshaw, Michael J. Lewis, Adam J. Ferrari, and John F. Karpovich. Archi-
tectural support for extensibility and autonomy in wide-area distributed object systems.
Technical Report CS-98-12, University of Virginia, june 1998.

[HA97] Alan Heirich and James Arvo. Parallel rendering with an actor model. Proceedings of the
6th Eurographics Workshop on Programming Paradigms in Graphics, pages 115–125, september
1997.

[HKRG02] F. Hülsemann, P. Kipfer, U. Rüde, and G. Greiner. gridlib : Flexible and efficient grid man-
agement for simulation and visualization. In Peter M. A. Sloot, C. J. Kenneth Tan, Jack J.
Dongarra, and Alfons G. Hoekstra, editors, Computational Science - ICCS 2002, volume 2331,
pages 652–661. Springer, Berlin, 2002.

[Int00] Intel Corporation. Getting Started with SSE/SSE2 for the Intel Pentium 4 Processor, 2000.
http://cedar.intel.com/media/pdf/p4/getting started.pdf.

[Int02] Intel Corporation. Hyper-Threading Technology Implications and Setup on Linux Operating Sys-
tems, 2002. http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?
cntKey=Generic+Editorial%3a%3asolveit impLinuxSetup&cntType=IDS EDIT
ORIAL&catCode=CDN.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Xavier Pueyo and Pe-
ter Schröder, editors, Rendering Techniques ’96 (Proceedings Seventh Eurographics Workshop on
Rendering), pages 21–30. Springer, June 1996.

[Jez93] J.-M. Jezequel. EPEE: an Eiffel environment to program distributed memory parallel com-
puters. Journal of Object Oriented Programming, 6(2):48–54, May 1993.

[KG01] P. Kipfer and G. Greiner. Parallel rendering within the integrated simulation and visualiza-
tion framework “gridlib”. VMV Conference Proceedings, Stuttgart, 2001.

[KHM
�

02] P. Kipfer, F. Hülsemann, S. Meinlschmidt, B. Bergen, G. Greiner, and U. Rüde. gridlib : A
parallel, object-oriented framework for hierarchical-hybrid grid structures in technical sim-
ulation and scientific visualization. In A. Bode, F. Durst, W. Hanke, and S. Wagner, editors,
High Performance Computing in Science and Engineering 2000 - 2002, pages 489–501. Springer,
Munich, 2002. to appear.

BIBLIOGRAPHY 167

[Kip00] Peter Kipfer. gridlib : System design. Technical Report 4/00, Computer Graphics Group,
University of Erlangen-Nürnberg, 2000.

[Kip01a] Peter Kipfer. gridlib : Advanced object-oriented programming paradigms. Technical Report
4/01, Computer Graphics Group, University of Erlangen-Nürnberg, 2001.

[Kip01b] Peter Kipfer. gridlib : Numerical methods. Technical Report 2/01, Computer Graphics
Group, University of Erlangen-Nürnberg, 2001.

[Kla89] Rainer Klar. Digitale Rechenautomaten. de Gruyter, fourth edition, 1989.

[Kni96] G. Knittel. A PCI-compatible FPGA-processor for 2D/3D image processing. In IEEE Sym-
posium on Field-Programmable Custom Computing Machines, pages 136–145. IEEE, april 1996.

[KON] KONWIHR. Competence Network for Technical, Scientific High Performance Computing in
Bavaria. http://konwihr.in.tum.de/index e.html.

[KRG02] P. Kipfer, F. Reck, and G. Greiner. Local exact particle tracing on unstructured grids. Com-
puter Graphics Forum, 22(2), 2002. accepted for publication.

[KS99] Peter Kipfer and Philipp Slusallek. Transparent distributed processing for rendering. Pro-
ceedings Parallel Visualization and Graphics Symposium (PVG), pages 39–46, 1999.

[KSK97] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning and sparse
matrix ordering library. Technical report, Department of Computer Science and Engineer-
ing, University of Minnesota, 1997.

[Lar98] Greg Ward Larson. The holodeck: A parallel ray-caching rendering system. In Eurographics
Workshop on Parallel Graphics and Visualization, 1998.

[LB98] Adriano Lopes and Ken Brodlie. Accuracy in 3D particle tracing. In Hans-Christian Hege
and Konrad Polthier, editors, Mathematical Visualization, pages 329–341. Springer Verlag,
Heidelberg, 1998.

[LKG00] U. Labsik, P. Kipfer, and G. Greiner. Visualizing the structure and quality properties of tetra-
hedral meshes. Technical Report 2/00, Computer Graphics Group, University of Erlangen-
Nürnberg, 2000.

[LKMG01] U. Labsik, P. Kipfer, S. Meinlschmidt, and G. Greiner. Progressive isosurface extraction from
tetrahedral meshes. In H. Suzuki, A. Rockwood, and L. Kobbelt, editors, Proceedings of Pacific
Graphics ’01 Conference, Tokyo, pages 244–253, 2001.

[LL00] P. Lallemand and L. Luo. Theory of the Lattice-Boltzmann method: Dispersion, dissipation,
isotropy, galilean invariance and stability. Physical Review E, 61, 2000.

[LS96] R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Behavioral Pattern for
Concurrent Programming. In James O. Coplien, John Vlissides, and Norm Kerth, editors,
Pattern Languages of Program Design 2. Addison-Wesley, Reading, MA, 1996.
http://www.cs.wustl.edu/ � schmidt/Active-Objects.ps.gz.

[MA] Jane F. Macfarlane and Rob Armstrong. POET: A parallel object-oriented environment and
toolkit for enabling high-performance scientific computing.
http://omega.lbl.gov/poet/Poet.html.

[McK95] Paul E. McKenney. Selecting locking primitives for parallel programs. Technical report,
Sequent Computer Systems, Inc., 1995. http://c2.com/ppr/mutex/mutexpat.html.

[Mer99] Philippe Merle. The CorbaScript language. Technical report, Université des Sciences et
Technologies de Lille, 1999. http://corbaweb.lifl.fr/CorbaScript/.

168 BIBLIOGRAPHY

[ML95] Michael J. Muuss and Maximo Lorenzo. High-resolution interactive multispectral missile
sensor simulation for ATR and DIS. In BRL-CAD Symposium, 1995.

[Mot99] Motorola Inc. AltiVec Technology Programming Interface Manual, 1999.
http://e-www.motorola.com/brdata/PDFDB/docs/ALTIVECPIM.pdf.

[MPI97] The Message Passing Library Version 2.0, 1997. http://www.mpi-forum.org.

[MPJ
�

00] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz. Smart memories: A mod-
ular reconfigurable architecture. In IEEE International Symposium on Computer Architecture,
2000.

[NJ99] Gregory M. Nielson and II-Hong Jung. Tools for computing tangent curves for lineary vary-
ing vector fields over tetrahedral domains. IEEE Transactions on Visualization and Computer
Graphics, pages 360–372, 1999.

[NJS
�

97] G. M. Nielson, I.-H. Jung, N. Srinivasan, J. Sung, and J.-B. Yoon. Tools for Computing
Tangent Curves and Topological Graphs for Visualizing Piecewise Linearly Varying Vec-
tor Fields over Triangulated Domains. In G. M. Nielson, H. Hagen, and H. Müller, editors,
Scientific Visualization: Overviews, Methodologies, and Techniques, chapter 21, pages 527–562.
IEEE Computer Society Press, Los Alamitos, California, 1997.

[NL01] Nallatech Limited. IEEE 754 Floating Point Core, 2001. http://www.nallatech.com.

[NVa] nVIDIA Corporation. New NVIDIA GPU Breaks One Billion Pixels Per Second Barrier.
http://www.nvidia.com/view.asp?IO=IO 20010618 6339.

[NVb] nVIDIA Corporation. Texture Compositing with Register Combiners.
http://developer.nvidia.com/docs/IO/1382/ATT/RegisterCombiners.pdf.

[NVc] nVIDIA Corporation. Vertex shaders.
http://www.nvidia.com/docs/IO/92/ATT/vertexshaders.pdf.

[OG02] Carl Ollivier-Gooch. GRUMMP Version 2.0.0 User’s Guide, 2002.
http://tetra.mech.ubc.ca/GRUMMP.

[OMG95a] Object Management Group. Compound Presentation and Compound Interchange Facilities, Part
I, December 1995. OMG Document 95-12-30.

[OMG95b] Object Management Group. CORBAServices: Common Object Services Specification, March
1995. updated November 22, 1996.

[OMG95c] Object Management Group. Systems Management: CommonManagement Facilities, Volume 1,
Version 2, December 1995. OMG Documents 95-12-02 through 95-12-06.

[OMG96] Object Management Group. Description of New OMA Reference Model, Draft 1, May 1996.
OMG Document 96-05-02.

[OMG97a] Object Management Group. OMG Home Page, 1997. http://www.omg.org/.

[OMG97b] Object Management Group. The Common Object Request Broker: Architecture and Specification,
2.1 edition, 1997. OMG Document 97-09-01.

[OMP02] OpenMP Architecture Review Board. OpenMP Specification for C++, Version 2.0, March 2002.
http://www.openmp.org/specs/mp-documents/cspec20.pdf.

[PBMH02] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on programmable graphics hard-
ware. Proceedings of SIGGRAPH 2002 Conference, pages 703–712, 2002.

BIBLIOGRAPHY 169

[PHK
�

99] Hans-Peter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and Larry Seiler. The Vol-
umePro realtime ray casting system. In Computer Graphics, 33 (Annual Conference Series),
pages 251–260, 1999.

[PK01] Hans-Peter Pfister and K. Kreeger. RAYA: A ray tracing architecture for volumes and poly-
gons. In SIGGRAPH 2001 course on interactive ray tracing, 2001.
http://www.merl.com/papers/TR99-19/.

[PMS
�

99] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley, Brian Smits, and Charles
Hansen. Interactive ray tracing. Interactive 3D Graphics (I3D), pages 119–126, 1999.

[PS98] Irfan Pyarali and Douglas C. Schmidt. An Overview of the CORBA Portable Object Adapter.
ACM StandardView magazine on CORBA, 1998.
http://www.cs.wustl.edu/ � schmidt/POA.ps.gz.

[RCJ98] E. Reinhard, A. G. Chalmers, and F. W. Jansen. Overview of parallel photo-realistic graphics.
EUROGRAPHICS’98 - State-of-the-Art Reports, pages 1–25, august 1998.

[RSHTE99] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive animation of volume line in-
tegral convolution based on 3D texture mapping. In Visualization ’99 Conference Proceedings,
Vienna, Austria, 1999. IEEE Computer Society Press.

[SB94] S. Singh and P. Bellec. Virtual hardware for graphics applications using FPGAs. In IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 49–58. IEEE Computer
Society Press, 1994.

[Sch94] Douglas C. Schmidt. The ADAPTIVE Communication Environment: An Object-Oriented
Network Programming Toolkit for Developing Communication Software. In Proceedings of
the 12th Annual Sun Users Group Conference, pages 214–225, San Francisco, CA, June 1994.
SUG. http://www.cs.wustl.edu/ � schmidt/SUG-94.ps.gz.

[Sch01a] Michael Schröder. Automatische Objekt- und Threadverteilung in einer virtuellen Maschine. PhD
thesis, Institut für Informatik, Universität Erlangen-Nürnberg, 2001.

[Sch01b] M. Schrumpf. Beschleunigte Isoflächenberechnung auf unstrukturierten Gittern. Studienar-
beit, 2001. Computer Graphics Group, University of Erlangen-Nürnberg.

[SGT96] D.J. Scales, K. Gharacharloo, and C.A. Thekkath. Shasta: A low–overhead, software–only
approach for fine–grain shared memory. Proceedings of the 7th symposium on architectural
support for programming languages and operating systems, october 1996.

[SHP97] Douglas C. Schmidt, Timothy H. Harrison, and Nat Pryce. Thread-specific storage for
C/C++. In Pattern Languages of Programming ’97 conference proceedings, September 1997.
http://www.cs.wustl.edu/ � schmidt/TSS-pattern.ps.gz.

[SHSS00] Marc Stamminger, Jörg Haber, Hartmut Schirmacher, and Hans-Peter Seidel. Walkthroughs
with corrective textures. In 11th Eurographics workshop on rendering, pages 377–388, 2000.

[SL00] Henry Styles and Wayne Luk. Customising graphics applications: Techniques and program-
ming interface. In IEEE Symposium on Field-Programmable Custom Computing Machines. IEEE,
2000.

[Slu96] Philipp Slusallek. Vision — an Architecture for Physically-Based Rendering. PhD thesis, Com-
puter Graphics Group, University of Erlangen-Nürnberg, Germany, 1996.

[Sol95] Richard Mark Soley, editor. Object Management Architecture Guide. John Wiley & Sons, third
edition, 1995.

170 BIBLIOGRAPHY

[SSH
�

98] Philipp Slusallek, Marc Stamminger, Wolfgang Heidrich, Jan-Christian Popp, and Hans-
Peter Seidel. Composite lighting simulations with lighting networks. IEEE Computer Graph-
ics and Applications, 18(2), March/April 1998.

[SSS98] Philipp Slusallek, Marc Stamminger, and Hans-Peter Seidel. Lighting networks – a new
approach for designing lighting algorithms. Graphics Interface, pages 17–25, june 1998.

[SV96] Douglas C. Schmidt and Steve Vinoski. Distributed callbacks and decoupled communica-
tion in CORBA. SIGS C++ Report, October 1996.
http://www.cs.wustl.edu/ � schmidt/C++-report-col8.ps.gz.

[TAO97] Computer Science Department, Washington University at St. Louis. Real-time CORBA with
TAO (The ACE ORB), 1997. http://www.cs.wustl.edu/ � schmidt/TAO.html.

[TAO98] Computer Science Department, Washington University at St. Louis. Principles and Patterns
of High-performance, Real-time Object Request Brokers, 1998.
http://www.cs.wustl.edu/ � schmidt/TAO4.ps.gz.

[USM96] S. Ueng, K. Sikorski, and K. Ma. Efficient streamline, streamribbon, and streamtube con-
structions on unstructured grids. IEEE Transactions on Visualization and Computer Graphics,
2:100–110, 1996.

[Wal95] Klaus Waldschmidt, editor. Parallelrechner: Architekturen—Systeme—Werkzeuge. Teubner,
1995.

[WG00] D. A. Wolf-Gladrow. Lattice Gas Cellular Automata and Lattice Boltzmann Models. Springer,
2000.

[WH92] Gregory J. Ward and Paul Heckbert. Irradiance gradients. Third Eurographics Workshop on
Rendering, pages 85–98, May 1992.

[WSB01] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive distributed ray tracing of
highly complex models. In Eurographics workshop on rendering, pages 274–285. Rendering
Techniques 2001, 2001.

[WSBW01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive rendering
with coherent ray tracing. Eurographics 2001 Proceedings, 20(3), 2001.

[Xil01a] Xilinx. Virtex datasheet, 2001.
http://www.xilinx.com/partinfo/ds031.htm.

[Xil01b] Xilinx. Virtex II Platform FPGA Handbook, 2001.
http://www.xilinx.com/products/virtex/handbook/ug002.pdf.

Index

Is there another word for synonym ?

— anonym

gridlib , 63

abstraction layers, 64
ACE, 30
active de-multiplexing, 37
Active Object Table, 37
ADAPTIVE Communication Environment, see

ACE
algorithmic abstraction, 70
Application Interface, 34
application specific integrated circuits, see

ASICs
ASICs, 55

Basic Object Adapter, see BOA
BOA, 34, 36

C++ Wrapper, 31
cache, 21, 49
cache coherent NUMA, see ccNUMA
ccNUMA, 22
CFD, 97
CLB, 55
client, 32
Common Facilities, 34
Common Object Request Broker Architecture,

see CORBA
Common Object Services Specification, see

COSS
communicator, 28
computational fluid dynamics, see CFD
concurrent parallel, 22
configurable logic blocks, see CLB
Connection Strategy, 35
container, see mesh

CORBA, 32
COSS, 34
custom programmable hardware, 54

data parallel, 22
de-multiplexing, 34
derived MPI data type, 29
design patterns, 31
DII, 33
distributed shared memory, see DSM
Domain Interface, 34
DSI, 33
DSM, 41
dynamic dispatch, 34
Dynamic Invocation Interface, see DII
Dynamic Skeleton Interface, see DSI

ensemble averaging, 84
exact integration method, 98
external polymorphism, 67, 69

facilities, 32
false sharing effect, 41
field programmable gate arrays, see FPGA
floating point operations per second, see FLOPS
FLOPS, 49
FPGA, 54
framework, 31
full-custom design, 55
functional decomposition, 42
functional parallel, 22
functor, 70

General Inter–ORB Protocol, see GIOP
GIOP, 34
grand challenge, 21

172 Index

IDL, 33
IIOP, 34
Inter–ORB Protocol, 34
Interface Definition Language, see IDL
Interface Repository, 33
Internet Inter–ORB Protocol, see IIOP
Interoperable Object References, see IOR
IOR, 34

Language Mapping, 33
Lattice Boltzmann, 84
lattice gas, 83
lattice site updates per second, see LUPS
LIC, 91
line integral convolution, see LIC
LUPS, 87

marching cubes, 78
marshaling, 33
memory pool, 65
mesh, 70
message passing, 26
Message Passing Library, see MPI
middleware, 63
MIMD, 21
MISD, 21
MPI, 27
multiple instruction, multiple data, see MIMD
multiple instruction, single data, see MISD

no remote memory access, see NORMA
non uniform memory access, see NUMA
NORMA, 21
NUMA, 21
numerical simulations, 63

Object Adapter, 34, 36
Object Management Architecture, see OMA
Object Management Group, see OMG
Object model, 32
Object Request Broker, see ORB
OMA, 32
OMG, 32
OpenMP, 43
ORB, 32
ORB Core, 32
OS Adaption Layer, 31

Parallel Virtual Machine, see PVM
particle distribution function, 84
personalization, 55
pipelining, 42
POA, 34, 36
POA Manager, 37
Portable Object Adapter, see POA
primitive objects, 69
programmable hardware, 53
proxy interfaces, 67
PVM, 26

QoS, 34
Quality–of–Service, see QoS

real–time, 34
Reference model, 32
register combiners, 54
relaxation, 84
request, 32
request-callback scheme, 106
RootPOA, 37

semi-custom design, 55
server, 32
services, 32
shear-warp algorithm, 92
SIMD, 21
single instruction, multiple data, see SIMD
single instruction, single data, see SISD
single program, multiple data, see SPMD
SISD, 21
Skeleton, 33
skeleton program, 70
SPMD, 22
Stub, 33
supercomputers, 21

TAO, 34
The ACE ORB, see TAO
thread–pool, 36

UMA, 21
uniform memory access, see UMA

vertex shader, 54
virtual NUMA, 41

