GPU Construction and Transparent Rendering of Iso-Surfacs

Peter Kipfer, Ridiger Westermann

Computer Graphics & Visualization, Technische Univésiiinchen
Boltzmannstrasse 3, 85748 Garching, Germany
Email: {ki pfer, westermann}@n.tum de

Abstract Alternative techniques avoid the construction of
a polygonal surface representation by displaying the
Iso-surface construction and rendering on proiso-surface on a per-pixel basis using hardware as-
grammable graphics hardware has recently beegisted texture mapping [20, 5] or cell projection
shown for tetrahedral grids. In this paper, we[17]. However, it is difficult to simulate transparent
present a novel edge-based approach that avoidsirfaces or shadows using such techniques. In ad-
redundant computations of edge-surface intersegtition, these techniques require the entire data sets
tions. We show how to achieve a significant per-to be rendered in every frame, while the surface can
formance gain by considering intrinsic features ofusually be rendered much more efficiently once it is
recent GPUs. The iso-surface extraction process isonstructed as a polygonal model.
re-formulated in a way that reduces both numeri- 14 gvercome these limitations, a number of ap-
cal computations and memory access operations. froaches that perform the Marching Tetrahedra [4]
span-space data structure allows us to avoid the preyqorithm on the GPU have been presented recently.
cessing of elements not intersected by the selectq [13, 16], the calculation of the iso-surface inside
surface. Finally, to allow for the rendering of trans- e tetrahedral elements was carried out in the ver-
parent surfaces, a GPU sorting routine is integrategby ynits of programmable graphics hardware. For
into the rendering pass. Our applications show nugach element four vertices are processed, resulting
merical simulation results, distance volumes angy, 5 (possibly degenerate) quad. Because vertices

advanced shading effects. are processed independently by the graphics hard-
ware, the classification of elements as well as the
1 Introduction and Previous Work computation of all possible intersection points has

to be repeated for every vertex. In addition, the
Iso-surface extraction has established itself as gomputed geometry cannot be stored in graphics
powerful visualization technique for 3D scalar datamemory, but it has to be rendered directly. As no
fields. For reasonably sized data sets, however, th{rface mesh is constructed, the construction pro-
technique can usually not run at interactive rates duéess has to be repeated in every frame. Furthermore,
to the huge amount of geometric primitives it pro-none of these methods allow for the rendering of

duces, and which then have to be transfered to théansparent surfaces as they would need to read back
GPU for rendering. the computed geometry for sorting. Smooth inter-

As a matter of fact, since the invention of the polation of vertex attributes across the tetrahedral
Marching Cubes [10] algorithm for iso-surface ex-€lements was not considered by these approaches.
traction in 3D hexahedral grids, one avenue of re- A significant improvement of GPU-based sur-
search has led towards interactive surface fitting apiace construction in tetrahedral meshes was pre-
proaches. Besides the use of hierarchical data strusented by Klein et al. [8]. First, fragment units have
tures to minimize the number of elements to bebeen employed, which provide a much more effi-
visited during surface construction [21, 19, 2, 18],cient means for performing the construction step.
other approaches try to reduce numerical computaSecond, OpenGL SuperBuffer objects have been
tions by extracting less accurate surface approximaised to store the result of the surface extraction
tions [11] or by view dependent surface construcstep. The SuperBuffer can subsequently be bound
tion [9, 6]. as vertex array without any copy operation and

VMV 2005 Erlangen, Germany, November 16-18, 2005

the iso-surface can be redrawn at maximum GPI2 Marching Tetrahedra Revisited
speed. While this allows the persistent storage of
the iso-surface geometry for further processing, ifThe Marching Tetrahedra algorithm is a variant of
does not improve on the processing required fothe Marching Cubes algorithm that can use smaller
each generated vertex. Because the algorithm i@bles because there are less possibilities a surface
element-centric, multiple edge-surface intersectionsan pass through such an element. Because of
and classifications of the element have to be perthe linear interpolant inside a tetrahedron, the con-
formed for each generated vertex. Additionally,tained surface is guaranteed to be flat. The March-
due to intensive use of shader computations, the réng Tetrahedra avoids ambiguous cases and requires
quired shader length poses a major problem in théess numerical computations per element compared
implementation. Acceleration techniques to reducéo the Marching Cubes algorithm. When convert-
the number of elements processed on the GPU dsg a hexahedral grid into a tetrahedral one, how-
well as transparent surface rendering was not corever, a larger number of surface elements is con-
sidered. structed and only a first order approximation to the
real surface is generated. In the Marching Tetrahe-
In this paper, we introduce a new method to condra algorithm, a pre-computed case table consisting
struct iso-surfaces from tetrahedral grids. Althoughof 16 cases is used to determine for every element
this method also has the potential to accelerate CPthe edges that are intersected by the iso-surface.
surface construction, it is in particular well suited The basic idea of our approach is to build an iso-
for implementation on the GPU due to its computesurface extraction algorithm that strictly minimizes
and memory access pattern. Similar to the approadihe number of operations to be performed. Because
by [8], our approach exploits OpenGL SuperBuffersan iso-surface is uniquely defined by the intersec-
[14, 12] for storing and rendering the iso-surfacetions of the edges of the 3D mesh, edge-based pro-
on the GPU, but it minimizes the number of op-cessing guarantees to find all intersections and to
erations to be performed as well as the amount chvoid redundant computations.
data to be accessed on the GPU. This is achieved
in two ways: First, element vertices are ordered in .
a unique way thus enabling an edge-based classife-1 Edge-based Classification

cation step that IS far simpler than the one usual_lyfn contrast to the standard Marching Tetrahedra al-
performed, both in terms of the number of numeri- orithm, our approach is based on a particular or-

cal computations and the number of memory acces%ering of element vertices. In this way, we can

pperatltl)ns.d Se(;](_)nrfi, ﬁn edgg-pas?e_d da:‘a SUUCYBse our decision on the comparison of the iso-value
IS eémployed, which aflows minimizing the num- vy the scalar values at two of the four vertices.
ber of edge-surface intersections. We present @Phis results in a minimal number of data values

efficient mapping from local intersection points to to be fetched in the classification step as well as a

global vertex indices, which is amenable to StaNyinimal length shader to perform the classification.

dard acceleration structures. Therefore the methoq,lherefore we enforce the local enumeration of the
can selectively process those tetrahedra that have rtices of a tetrahedron to be in ascending order

intersection wi_th the iso-surface. Smoth ShadinQNith respect to the scalar value they hold. Figure 1
and GPU sorting for transparent rendering can b%hows the resulting layout

achieved in this way.

lows: The next section presents the modification ~ \

of the Marching Tetrahedra algorithm that is at the ., " ‘} 4‘
core of the improved GPU implementation. Next, N
the acceleration techniques we have implemented three four s three
are discussed. While Section 6 presents perfor- ,<u<w<y
mance results for the iso-surface extraction, Section

5 demonstrates a number of applications of the proFigure 1: The canonical layout of the tetrahedron
posed technique. and the three basic intersection cases.

The remainder of this paper is organized as fol- ‘k ‘\

666

According to this setup, only three different caseson the CPU but it cannot be realized efficiently on
of how the surface intersects the edges of an elehe GPU. Once a particular element has computed
ment for a specific iso-valueare possible (see Fig- the resultant edge—surface intersection points, these
ure 1 on the right): vertices have to be written into a vertex array for

0 Case l:vg < i < v1 < vy < w3: edges rendering. This would imply, however, that a sin-

e, €1, e2 are intersected. This gives one trian-gle element—one tetrahedron—has to spawn multi-
gle inside the tetrahedron. ple elements—the intersection points—on the GPU.

0 Case 2:v9 < v1 < i < vy < w3: edges Unfortunately this can not be realized, and as a mat-

e1, e2,e3,e4 are intersected. This gives one ter of fact, the described computation has to be per-
quad inside the tetrahedron. Because of théormed repeatedly for the set of all possible inter-
linear interpolant, the quad is guaranteed to besection points.

flat. This procedure has several limitations. First,
O Case 3:wo < v1 < vz < @ < vs: edges for every potentially generated intersection point
€2, €4, €5 are intersected. This gives one trian-four scalar values and four floating point coordi-
gle inside the tetrahedron. nates have to be retrieved. Second, all scalar values
Because of the canonical ordering of the verticespaye to be considered to perform the classification.
the decision which case to select can be done byhjrd, if multiple elements share an edge, the inter-

considering edges alone. If there is an intersection section point along this edge is computed multiple
with this edge, the element is classified as a case gmes.

otherwise it depends on whether the iso-value is less

. To avoid these drawbacks, we favor an edge-
thanwv; (case 1) or larger than, (case 3). Triv- 9

is found, do not need to be addressed explicitly — ; .
f truction. We build the edge-based dat
they will be implicitly handled as described below. suriace consiuction. We bul © ecge-nased aaia

- structure as follows. In a floating point texture, we

This is mu_ch simpler to implement than the CIaSSI'store vertex coordinates and the associated scalar
cal Marching Tetrahedra approach, as we do onl

h ¢ ider th | | tth . Yalue. In an edge texture, for every edge each texel
ave fo consider fhe scajar vajues a e_vertuies carries index pairs referencing the two vertices con-
andve. From an edge-based perspective, the el

¢ classification is implicity ai by the i nected by that edge. Hence, every edge can access
ement classification Is implicitly given by Ih€ IN- o e rtices as well as the scalar values at these ver-
tersection status of element edge Let us note

h that dt f | ttices, and it can thus compute the intersection point
ere, thal we never neec o periorm an elemen along that edge. This interpolated intersection point
centric classification and therefore need to evaluat

. . . tualfs \written into a vertex array equally sized than the
each edge only once. A linear interpolation using g,
: . dge texture.
clamped interpolation parameter for all edges of the)))
By using this data structure, multiple computa-

tetrahedron will trivially give us the correct partial ‘ . . A
tions of the same intersection point are avoided.

surface.) : L
Furthermore, if an edge does not find an interior
intersection, the fourth component of the intersec-
2.2 Edge-based Data Structure tion point is set to -1 or -2. While the former value
Previous approaches to GPU iso-surface construdddicates the iso-value to be less thanthe latter
tion solely employed data structures on a tetraheone tells us that the value was larger than In
dral element basis. In such data structures, eadhis way, simply by fetching the intersection point
element stores indices to its four vertices and astor its edgees can every tetrahedron classify itself
sociated scalar values. By comparing each scal@ccording to the iso-value.
value with the iso-value, a bit pattern used to clas- We exploit this observation by always construct-
sify the element is built. Finally, linear interpolation ing a quad inside each tetrahedron. For the cases
along classified edges is carried out to determine theith three intersections only, we simply repeat the
surface—edge intersection points. first or the last intersection point producing a degen-
The crucial observation here is, that the dateerate triangle-quad. Because the processing is now
structure as described is well suited for processingdge-based, we're guaranteed to process each edge

666

only once. This is a huge advantage compared tto the given iso-value. The interpolation coefficient
previous approaches. is computed straight forward. The computed po-
sition will be illegal if the iso-surface does not in-
tersect the tetrahedron, but those positions will be
ruled out later on anyway so we ignore that fact
We implement a three-pass algorithm for creatind’€'® t0 keep the shader simple. The shader writes
the iso-surface geometry: the interpolated positio(i, 3, 2) to a floating point

O Interpolation:Compute the linear interpolated rénder target. The fourth component of the output
intersection position with each edge of theholds a markern that is set to -1 if the iso-value

3 Extraction algorithm

tetrahedral mesh. is smaller than the first vertex and it is set to -2
0 Global indicesCompute the global vertex in- if it is larger than the second vertex. If there is a
dices of the quad for each tetrahedron. correct intersectiony holds the computed interpo-

O Data arraysMap the global indices to linear lation parameter clamped {0; 1]. The following
arrays for rendering. This pass creates vertepseudo-code implements the interpolation shader.
and normal arrays and other vertex attribute Aladge = tex2D(Edges, TCoor d[0]) ;

rays. v0 = tex2D(Vertices, edge. xy) ;
vl tex2D(Verti ces, edge. zw) ;

31 lnterpOIat'on /| we know that vO has snaller scalar
na

x(vl.w - vO.w, epsilon);

/
d
i clanp((lso - v0.w) / d);

fixed point floating point floating point

BESE
o o result = lerp(vo,vl,i);
if (Iso >vl.w result.w=-2;
o verces erporzten else if (Iso <v0.w result.w= -1,

intersections

else result.w=1i;

Figure 2: The first pass computes intersections for

all edges. 3.2 Creating Global Indices
The first pass computes the interpolated intersec- . iespon fosting point foed pin
tion position for each edge using the fragment units. EEEENN |EE EER

other edges.

We provide the shader with a four component float-

ing point texture that holds the vertex coordinates

(the fourth component stores the scalar valpend

an index texture as shown in Figure 2. It contains in globalindex maps interpolated global indices

the left half all edgess — one for each tetrahedron.

This means that an edge can be stored more thafigure 3: Computing the global indices of the iso-

once if it is the canonical edgg for more than one surface vertices.

tetrahedron. The right half of the edge index tex-

ture holds all remaining edges uniquely. All edges In the second pass, we need to determine the four

are oriented such that the first vertex has the smalleglobal indices for each tetrahedron that form the

scalar value. The indices are encodedw@as) tex- (possibly degenerate) iso-surface quad. As we have

ture coordinates into two fixed point values of suffi-shown above, this can be decided solely based on

cient Bit-width. This allows to address any numberthe status of edge;. We therefore can determine

of vertices up td64k x 64k. The special arrange- the localindices of the quad simply by looking at

ment of the edgess is crucial for the next pass. them component produced for all edgesin the

The halves may be filled unevenly, so we draw twoprevious pass. Because we have put all edgem

separate quads to adaptively generate fragments ftire left side, a fixed point render target half in width

the shader. nicely fits our needs. Figure 3 illustrates the con-
The interpolation shader fetches the two verticegept. Here is the table for mapping to the local

of each edge and interpolates the position accordinguad indices. It is encoded as a constant array in the

666

shader. Note that it is much smaller than the tables
needed in previous approaches. We thus never risk
of running out of shader registers.

fixed point

m ‘ localg localy locals locals

linear data arrays

1 0 1 2 2
[0;1] 1 2 3 4 LI
2 2 2 4 5

global indices

The local indices are now mapped géobalin-
dices by selecting the indicated value from the pro-
vided global index maps of the tetrahedron accord-
ing to its canonical layout. Because the first steg-igure 4: Creating the data arrays of the iso-surface.
produced an intersection position for each edge,

these indices now represent the correct partial sur-

face inside the tetrahedron. These maps are staffl D @WAr rays command or can be further pro-

and do not need to be recomputed like it is thecessed. We choose to expand the global indices into

case in cell-projection approaches. This operatiofVO &rrays in order not to get buffers with large
therefore does not require any dependent textur@SPeCt ratios. The shader only needs to do a de-
lookups, as we carefully aligned the index mapsoendent texture fetch to get the interpolated vertex

and edge:; at the same texture coordinate position.CoTresponding to the global index and writes it to a
Although this sounds like a quite expensive operafl0@ting point SuperBuffer target that can be bound

tion, it can be encoded very efficiently in an ARB @S vertex, nqrmal, color or attribute array (se_e Fig-
fragment program using only 17 instructions by ex-Ure 4). The first pass already took care of setting the

ploiting the vectorization capability of the compare " COmponent of the interpolated vertex. When cre-
statement. Here is pseudo-code for the shader corfiling @ vertex array, negative values, i.e. non-valid
puting the global indicesio, i1, i, i3) from linear e_dge_ intersections, push the geometry outside the
1D edge indices. viewing frustum. The shader only has to replace

values in[0; 1], which signal valid intersection po-
v = tex2D(I nterpVtx, TCoord[O0]); sitions, with 1 if rendering using the fixed-function
pipeline is required. If one uses custom shaders to

if (v.w==-1) draw the iso-surface, the value can simply be ig-
// iso smaller than values at edge3 . -
idx = [0, 1, 2, 2]: nored or used as parameter to some visualization.

else if (v.w==-2) Tetrahedra that don’t have an intersection at all will
/1 iso larger than values at edge3 therefore automatically be pushed completely out-
idx =[2, 2, 4, 5]; side the viewing frustum.

el se . .
/1 flip last two for GL_QUAD draw Note that if the same e}ppr.oach is taken to pro-
idx =[1, 2, 4, 3]; duce a normal array for lighting and color or tex-

o ture coordinate arrays for mapping additional val-
/1 get global edge indices of tet ues, sophisticated mappings that choose to sample

map0 = tex2D(Map0, TCoord[0]*[2,1]);

mapl = tex2D(Mapl TCoord[0]+*[2, 1]): the remaining edges of the tetrahedron are easy to

do, as this information is available from the global

res = mapl.yyyy; index maps that can be accessed directly thanks to
res = (idx <5) ? mapl.xxxx : res; the alignment with the current position of the frag-

res = (idx < 4) ? map0. www : res; ment

res = (idx < 3) ? map0.zzzz : res; o . .

res = (idx < 2) ? map0.yyyy : res; The third pass can be skipped, if only the ge-

res = (idx < 1) ? map0. XXXX : res; ometry and topology of the iso-surface are de-

sired for further processing or if the applica-
tion decides to use indexed drawing, e.g. using
gl Dr awEl enent s. The global index array from

The optional third pass converts the global indicegshe second pass is already in the correct tightly
into linear data arrays that can be drawn using th@acked format for rendering quad primitives. The

3.3 Creating Vertices

666

SuperBuffer specification allows it to be bound aspropriate depth values to exploit the early-z culling
on-GPU index array without copying. feature of modern GPUs for the successive passes.
However, for rendering the resulting arrays, one
has to clear the array buffers with vertex positions
that have a negatives component so they won't

For a particular iso-value, many of the tetrahedra{)e dr_avx_/n. Unfortunately, this optlmlzat_lon_offers
won't be intersected. Our algorithm will produce only I|m_|ted spfeedup, as _the clear operatlon Is rather
guads for them that lie outside the viewing frustum.SXPENSIVE as i alwgys f.|I!s the entlrg target buffe_r
Although we can safely assume that these quad\g[hereas the quad identified by the interval tree is
will be efficiently culled by the rendering pipeline, aften small.

we like to avoid computing them beforehand. For

. - Note also that as we have aligned the intersec-
doing so, many acceleration structures have been .
tion interpolation of the edges; and the compu-

proposed in the past to avoid redundant Comletatation of the global tetrahedra indices exactly with

tion. - For iso-surface extractl_cm on the .GPU' Wetpe tetrahedra, the adaptive quad height computed
need a structure that adapts nicely to the |nstrumeqrom the interval tree is valid for all passes of our

driving our computation: the screen-space quad .
; algorithm and therefore accelerates all passes ac-
covering the fragments to produce.

cordingly. This is especially beneficial for the last
one that generates the data arrays and attributes as
it has the largest output bandwidth. For drawing
the iso-surface, the top row of the quad must sim-
ply be specified as a starting offset for a call to the
gl Dr awAr r ays command with appropriate array
length.

4 Acceleration structures

[min;max]
[min;max]
[min;max]

[min;max]

tetrahedra interval tree selected tetrahedra
If the dataset has more elements, edges or ver-
Figure 5: A interval tree built from the per-row tices than can be indexed with the given Bit-width,
min/max scalar values of a sorted tetrahedra fieldve split the model into regions that are stored in
is used to accelerate the iso-surface extraction up teeparate textures. Because processing of the tetra-
a factor of 2.8. hedra is independent, the regions do not need to
have any spatial relation. The procedure takes care,
We observe that using the iso-surface extractiothat the global sortedness of the tetrahedra is not
algorithm proposed above, the processing for onehanged. Consequently, the interval tree also tells
tetrahedron is independent of all others, and we cans whether a region can be skipped completely be-
freely rearrange the tetrahedra sequence if we moveause it doesn’t contain any contributing tetrahe-
the edgess; and the global tetrahedra index mapsdra. Sorting the tetrahedra, creating the regions and
accordingly. If we sort the tetrahedra according tobuilding the interval tree is done in the preprocess-
the smallest scalar they contain, we get a two diing step. For the bluntfin dataset, the preprocessing
mensional field of which we can determine the min-needs about 5 seconds. The structure can also eas-
imum and maximum scalar value that occurs peily be saved to disk. At runtime, the interval tree is
row. Figure 5 illustrates this process. From thequeried every time the iso-value changes. Our im-
min/max intervals we build an interval tree [3]. It plementation of the interval tree accounts for that
can be queried rapidly in which row any concreteby using a B-Tree as basis for the interval tree. The
iso-value occurs. For accelerating the iso-surfac®8-Tree can be configured for a fixed tree depth or
extraction, we want to process only tetrahedra thaimited number of elements at its nodes. This al-
have an intersection. So we simply determine théows for fine tuning of the query performance by
smallest and largest row number from the intervabalancing CPU versus GPU performance depending
tree for the specific iso-value and draw a full-widthon how many intervals are accumulated in the tree
qguad that exactly fits only these rows in height. Innodes. For fast GPUs, processing one row more or
order to also rule out the non-contributing tetra-less doesn’t make the difference while saving CPU
hedra in the quad, the first pass can write out aptime by traversing a shallow tree does.

666

5 Applications Method | million tets / sec

Interval tree Interval tree
disabled enabled
Because passes two and three of our system cre—gygact (2 pass)| 65.1 830
ate results in native OpenGL format used for in- Extract (3 pass)| 21.2 525
dexed or array drawing, it can be integrated straight- Extract & Render| 15.2 422

forward into existing rendering systems. This sec-
tion demonstrates versatile applications of our sys- Table 1: Performance on an ATI 9800Pro GPU.

tem to efficiently drive further processing steps. Method | million tets / sec

Our system can interpolate any per-vertex attribute Interval tree Interval tree
for the iso-surface. Figure 4 on the color page disabled enabled
shows the ability to create per-face or per-vertex Extract (2 pass)| 112 143
normals for flat or smooth shading and to inter- _Extract (3 pass)| 43.5 69.4

Extract & Render| 28.6 57.1

polate texture coordinates for mapping a precom-
puted 3D LIC texture. We can also make use of
OpenGL extensions lik&Tl _pn_tri angl es to
smooth the geometry. In Figure 4 on the color page
we render subdivided triangles using cubic interpomethod extracts a vertex array of the iso-surface,
lation for the vertex positions. computes per-vertex normals and draws the lit sur-
Although our system allows for highly interactive face onto the screen. On the left column, we have
iso-surface extraction rates, one might be intereste@isabled the interval tree and process and draw all
in displaying multiple level sets at once. For this,tetrahedra. This is the lower performance bound. In
the surfaces have to be rendered transparently. Prée right column, the interval tree selects only con-
vious approaches needed to read back the geometifjouting tetrahedra. Consequently, the performance
for sorting on the CPU or employed depth-pee”ng_val’ies with the iso-value. The numbers shown here
We take advantage of the indices created in pass twis the maximum performance occurring if the iso-
and feed them into a GPU sorter [7]. Now the iso-value performs a full sweep from min to max. The
surfaces can be blended correctly in back-to-fronpluntfin model was used for these timings where
order. Figure 2 on the color page shows an exeach hexahedral cell is split into 5 tetrahedra (see
ample. Note that it's advantageous to use sortingrigure 3 on the color page for multiple iso-values).
compared to depth peeling, as the complexity of thdable 2 lists the performance of our method for
sorter does not depend on the depth complexity o$tate-of-the-art graphics hardware.
the iso-surface, which varies and is not trivial to de- These numbers are valid for datasets that fit into
termine. The GPU sorter can sort 7 million itemsGPU memory. Most of the performance gain of our
per second. In Figure 5 on the color page we comsystem comes from the fact that we process each
pute smooth per-vertex normals and texture coordiedge intersection interpolation only once. This can
nates to apply a third-party glass shader [1] withoube expressed equivalently by comparing the texture

Table 2: Performance on an ATl X800 XT GPU.

modifications for convincing refraction. read bandwidth of the two systems. Klein’s system
requires 216 Byte per tetrahedron. If we assume
6 Results an edge valence of 6 on average, our system reads

only 130 Bytes per tetrahedron. Both systems store
In the following, we present performance results.identical 128 Bit of floating point data per vertex.
We provide timings for a system equipped with aFor storing per-tetrahedron information our system
P4 3.0 GHz processor and ATl Radeon 9800Prds more efficient and needs only 128 Bit compared
graphics card. This represents the same hardwate 224 Bit of the previous solution.
that has been used by Klein et al. in [8]. Table 1 The performance of our system could be im-
shows the performance we achieve using 6 region@roved by future hardware that supports three-
an 8-Bit (u,v) edge map and 1D indexed 16-Bit component fragment shader output to packed target
global index maps. The two pass method meangprmats or has more output bandwidth. Then we
we only extract the interpolated vertices of the iso-would be able to split the output of the first pass
surface and the global index array. The three passithout penalty and render the interpolated inter-
method produces a complete vertex array. The lagtection position and the marker to two separate tar-

666

get buffers. The marker can be encoded easily in
8 Bits. The second pass then would only need to

fetch from this low bandwidth texture. 5]

7 Conclusion and future work

We have presented a system for iso-surface extrac[6]
tion on the GPU that produces both geometry and
topology and stores it in GPU memory for ren-
dering or further processing. Using an innovative [7
edge-based approach, it minimizes both the neces-
sary operations and the shader bandwidth required.
Additionally, it provides a more compact storage g
format than previous approaches. The capability
to interpolate arbitrary per-vertex attributes offers

a very versatile tool for highly interactive rendering [g]
of level sets.

We extended the system with post-processing
techniques for high quality rendering of the surfacgio]
geometry, including advanced shading for mapping
additional data on the surface as well as techniques
that add additional depth cues to the visualizationi1]
like high-quality sorted transparency or reflections.
Because our system processes iso-surface geome-
try only in actually contributing tetrahedra, the post-[12]
processing is efficient, too.

An exciting future extension would be the inte- [13]
gration of more sophisticated automatic accelera-
tion techniques similar to [15] that can be evalu-
ated directly on the GPU. This would improve the[14]
timings in Table 2 as the CPU is the limiting factor
here. Our approach provides all the geometric ang s
topologic information that is necessary. An implicit
occluder can be used to drive the early-z culling fea—1
ture of the GPU to allow for view-dependent pro-
cessing. The SuperBuffer technique allows us to
render to a compatible render target that can be usefgn
as hierarchical z-buffer in successive passes without
involving any copy operations.

6]

[18]
References
[1] 3Dlabs. Opengl shading language demo.
http://developer.3dlabs.com/openGL2/downloads, 2005. [19]

[2] Stephan Bischoff and Leif P. Kobbelt. Isosurface reconstruc-
tion with topology control. InPG '02: Proceedings of the

10th Pacific Conference on Computer Graphics and Appli-
cations page 246, Washington, DC, USA, 2002. IEEE Com-
puter Society. [20]
P. Cignoni, P. Marino, C. Montani, E. Puppo, and

R. Scopigno. Speeding up isosurface extraction using inter-
val trees. INEEE Transactions on Visualization and Com-
puter Graphicsvolume 3, pages 158-170, 1997. [21
A. Doi and A. Koide. An efficient method of triangulating
equi-valued surfaces by using tetrahedral cells. |IBICE

13

(4

666

Transactions Commun. Elec. Inf. Sysblume E-74, pages
214-224, 1991.

Klaus Engel, Martin Kraus, and Thomas Ertl. High-
Quality Pre-Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading. [Burographics / SIGGRAPH
Workshop on Graphics Hardware '0Annual Conference
Series, pages 9-16. Addison-Wesley Publishing Company,
Inc., 2001.

B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and
K.I. Joy. Interactive view-dependent rendering of large iso-
surfaces. IProceedings of IEEE Conference on Visualiza-
tion, pages 475-482, 2002.

] Peter Kipfer, Mark Segal, andiRliger Westermann. Uber-

flow: A GPU-based particle engine. In T. AkeninesNér

and M. McCool, editorsProceedings Eurographics Graph-
ics Hardware Confereng@ages 115-122. IEEE, 2004.

T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelerated
Reconstruction of Polygonal Isosurface Representations on
Unstructured Grids. liProceedings of Pacific Graphics '04
pages 186-195, 2004.

Yarden Livnat and Charles Hansen. View dependent isosur-
face extraction. VIS '98: Proceedings of the conference on
Visualization '98 pages 175-180, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

William E. Lorensen and Harvey E. Cline. Marching Cubes:
A High Resolution 3D Surface Construction Algorithm.
In Computer Graphics (SIGGRAPH 87 Proceedings)l-
ume 21, pages 163-169, 1987.

C. Montani, R. Scateni, and R. Scopigno. Discretized march-
ing cubes. InVIS '94: Proceedings of the conference on
Visualization '94 pages 281-287. IEEE Computer Society
Press, 1994.

nVidia. Data Storage and Transfer in OpenGL.
http://developer.nvidia.com/docs/I0/8229/Data-Xfer-
Store.pdf.

V. Pascucci. Isosurface computation made simple: Hardware
acceleration, adaptive refinement and tetrahedral stripping.
In Proceedings of IEEE TCVG Symposium on Visualization
pages 293-300, 2004.

J. Percy. Opengl
http://www.ati.com/developer/SIGGRAPHO03/
PercyOpenGLExtensionsSIG03.pdf, 2003.
S. Pesco, P. Lindstrom, V. Pascucci, and C. Silva. Implicit
occluders. INEEE/SIGGRAPH Symposium on Volume Vi-
sualization pages 47-54, 2004.

Frank Reck, Carsten Dachsbacher, Roberto Grossother
Greiner, and Marc Stamminger. Realtime isosurface extrac-
tion with graphics hardware. |Eurographics 2004 Short
Presentations2004.

S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated
volume and isosurface rendering based on cell-projection.
In Proceedings of IEEE Visualization '0Opages 109-116,
2000.

Dietmar Saupe andidgen Toelke. Optimal memory con-
strained isosurface extraction. WMV '01: Proceedings

of the Vision Modeling and Visualization Conference 2001
pages 351-358. Aka GmbH, 2001.

Han-Wei Shen, Charles D. Hansen, Yarden Livnat, and
Christopher R. Johnson. Isosurfacing in span space with ut-
most efficiency (ISSUE). In Roni Yagel and Gregory M.
Nielson, editors,IEEE Visualization '96 pages 287-294,
1996.

R. Westermann and T. Ertl. Efficiently using Graphics
Hardware in Volume Rendering Applications. [@om-
puter Graphics (SIGGRAPH 98 Proceedingppges 169—
177, 1998.

Jane Wilhelms and Allen Van Gelder. Octrees for faster iso-
surface generationACM Transactions on Graphics (TOG)
11(3):201-227, July 1992.

extensions.

