
Distributed Lighting NetworksPeter KipferComputer Graphics Group, University of Erlangen-N�urnbergAm Weichselgarten 9, D-91058 Erlangen, Germanykipfer@informatik.uni-erlangen.deAbstractSimulating the physics of energy transport is a well established method for creating im-ages from a description of a virtual scene. The algorithms developed over the past years, arecomplex and demand a lot of computing power. The Vision rendering framework providesa
exible, object{oriented architecture, based on the physical description of rendering. Itslighting network technique allows the simulation of complex lighting by composition of algo-rithms. This technical report presents a case study of applying an integrated approach toparallelization and distribution in a application{oriented way to the Vision rendering frame-work, with an emphasis on lighting calculations. The combination of a multi{threaded client{server model with asynchronous request processing, allows data{parallel work to be done,while taking advantage of functional parallelism. Using CORBA for the implementation ofthe distribution functions, and the existence of wrapper objects, makes distribution speci�cissues totally transparent to developers of traditional rendering and lighting algorithms, whileproviding support for programmers of advanced algorithms and for production purposes. Thedistributed system is completely con�gurable by Tcl{scripts. Despite the
exibility and gen-eral character of the distributed system, the overhead is kept small, and good speedup can beachieved.1 IntroductionSince the beginning of computer graphics, creating images from virtual scenes has been a majorresearch subject [Rog98]. Two main directions have evolved since then: the �rst one tries toapproximate the illumination of a surface by applying algorithms and heuristics to local data andparameters. Though the achievable e�ects are limited, the purely local character of this approachpermits e�cient hardware implementation and easy parallelization through hardware replication.The second approach to image creation is to simulate the physics of energy transport withinthe scene [SP94]. The algorithms, that have been developed for the global exchange of illuminationinformation, are however quite complex and demand a lot of computing power. Therefore theyare mostly software implementations on general purpose hardware. To reduce the execution time,parallelization and distribution of computations among multiple processing units is a currentresearch topic.Algorithms, computing global illumination e�ects are hard to integrate e�ciently into tradi-tional ray{tracing software, because of the way they access the scene data. Programs, that havebeen developed especially for a new illumination algorithm, on the other hand often fail to inte-grate traditional rendering functionality. This strong dependence on speci�c algorithms is a majordrawback for both research and development as well as for a production environment. The Visionrendering framework [Slu96] o�ers a
exible, object{oriented architecture, which is strongly basedon the physical description of rendering. It takes advantage of the common aspects of variousrendering algorithms, while isolating their di�erences. The de�nition of frozen interfaces for thesubsystems enables the rendering algorithms to be used as building blocks, that can be insertedat the appropriate places. They can be exchanged with each other without side{e�ects on otherparts of the system. 1

This technical report presents an integrated approach to parallelization and distribution forthe Vision rendering framework, with an emphasis on the lighting subsystem. It combines amulti{threaded client{server model with asynchronous request processing, communicating throughCORBA. This allows data{parallel work to be done, while taking advantage of functional paral-lelism. The implementation of the distribution functions within base classes and wrapper objectsmakes the distribution issue totally transparent to developers of traditional rendering algorithms,while leaving it up to the developer of advanced parallel algorithms whether to use it, or not.In any case, the distributed system can be con�gured by Tcl{scripts to reuse traditional imple-mentations for functional parallelism or data{parallel work. Additionally, because of it's minimalintrusion into the core of the Vision architecture, the whole distributed system extension canbe removed by conditional compilation, making the Vision framework portable to non{UNIX,stand-alone environments, as long as there exists a ANSI C++ Compiler.This technical report is organized as follows: the next section gives a very brief introductionto the Vision rendering framework and its lighting subsystem. In section 3, the system extensionfor distribution and parallelization is presented. A overview of the management and computationserver classes is followed by a discussion of the central aspect of asynchronous communication,and how to apply it to lighting calculations. Section 4 illustrates the e�ciency and
exibility ofthe distribution extension for various purposes with example con�gurations. After section 5 hasdiscussed advantages, disadvantages and future work, section 6 concludes this technical report.2 The Vision frameworkThe architecture of the Vision rendering framework closely follows what could be a descriptionof the rendering process in natural language. The environment is divided into three major parts,containing eight categories, which describe the subsystems of the implementation. Figure 1 showsthe resulting clear separation into geometrical description of the scene, simulation of global illu-mination exchange and sampling of the resulting light�eld.
Global Illumination

Lighting

LightSource
Shader

GeoObject
Container

Lighting

Shader

View

Camera

Lenses RendererFilm

Scene Description (DAG)

Rendering

Volume-

Figure 1: A class diagram [Boo94] of the subsystems of the Vision architecture and their \uses"{relation, taken from [Slu96].� GeoObject, Surface and Volume: The abstract base class GeoObject contains the in-terface for the geometry subsystem. A scene description consists of objects derived from2

Surface or Volume, describing primitives. Container objects can be used to build hierar-chical structures. The geometry subsystem maintains the scene as a directed acyclic graph(DAG).� LightSourceShader: This subsystem is able to describe the emission of light from a surfaceor volume.� Shader: A shader describes the re
ection of light at a distinct point on a surface. Using auni�ed description of ray{surface intersections makes this structure independent of the actualgeometry of the intersected object, which can be queried from the geometry subsystem.� VolumeLighting: This subsystem describes the general interactions between light and amedium. It is separated from the shader subsystem, because there are more e�ects to takeinto account, making the handling of surfaces easier to optimize.� Lighting: A lighting object describes the global aspects of illumination within a scene. Ituses the local descriptions of illumination provided by the above subsystems to compute theincident illumination at any point in the scene. The continuing work on Vision has broughtup many implementations of the lighting subsystem. In the context of this technical report,the Lighting Networks [SSH+98] are of special interest.� View: This subsystem describes a particular view of the scene. It triggers the rendering ofan image with the help of a camera and a �lm object.� Camera: With the use of the lenses system and the viewing parameters, the incident 3D{light�eld is projected onto the 2D{�lm.� Film: With the help of the Renderer system, the 3D{light�eld is sampled and saved persis-tently.2.1 Lighting NetworksTraditional rendering systems often implement lighting calculations within a monolithic algorithm.However, the e�ects expressed by Kajiya's rendering equation [Kaj86] can also be calculated in-dependently. Multi{pass technology [CRMT91] is using this functional decomposition to obtainbetter results. This clearly is a starting point for working in parallel, but keeping track of depen-dencies within the result database is a problem for monolithic systems.The lighting network [SSH+98] technology within the Vision framework provides an object{oriented way of dealing with functional decomposition for lighting calculations. It implements alighting subsystem for Vision.Illumination is represented to the Vision system through di�erent local description formats(Illumination Basis | IllumBasis). A algorithm for lighting calculation can therefore be viewedas a Lighting Operator (LightOp) on a speci�c description. There are converter LightOps, whichtransform a IllumBasis into another one. To enable automatic con�guration, the LightOps can bequeried about the IllumBasis they support. The most common IllumBasis is the Point{SamplingBasis. The LightOps are connected to form a lighting network. Figure 2 shows a example network.In addition to a better understanding of what's going on within the lighting subsystem, thisstructure is simple to modify and thanks to object{oriented programming, easy to maintain1.The whole lighting network is managed by a special object called MultiLighting, that imple-ments the lighting subsystem interface towards other Vision subsystems and behaving according tothe facade design pattern [GHJV95]. A illumination request is forwarded to the LightOp \at thelower end" of the network, called the MasterLightOp. While performing his calculations, he querieshis predecessor. This leads to a pull{driven data{
ow through the network. The distributed sys-tem extension described in this technical report, is capable of ful�lling these communication tasks1please see [SSH+98] for a profound discussion of formal requirements like problem domain decomposition, graphrelaxation and BRDF compatibility issues. 3

Lighting
Multi-

Radiosity
Bounded PointSamp.

to
QuadTree

Direct
Lighting

Caustic
MapsFigure 2: A example of a lighting network, correctly simulating the illumination e�ects, thePhong{shading algorithm tries to approximate.asynchronously, enabling the lighting network to work with functional parallelism in the fashionof a pipeline.3 The distributed SystemThe (reentrant) subsystems of the Vision framework lay the foundation to a new approach indistributed rendering. The extension focuses on the distributed management of these subsystems,while paying special attention to portability and minimal code changes of the traditional Visionclasses. The basic infrastructure of the distributed Vision system [Peu98] consists of seven maincomponents. Concurrency control and the communication infrastructure is implemented through�ve management server classes:� Session object: This is the central control class for all activities of all objects, that worktogether in the creation of a image. There is exactly one Session object per scene description.It saves references to all Vision objects and implements the MultiLighting and the Session in-terface, following the facade design pattern, to coordinate work for all participating Rendererand Lighting objects.� Vision object: It maintains the scene description, creates Lighting and Renderer objectsand triggers their methods. It acts as a instance of a traditional Vision object for the Sessionand the HostManager objects. A Session object typically creates multiple Vision objects tomake them work functionally parallel or concurrently on some data. The CORBA clientlaunched by the user to start the system, is a Vision object executing a special controlthread, which orchestrates the creation of the Session, triggers the rendering phase andcontrols the shutdown.� HostManager object: On every participating host, a HostManager provides informationabout the system environment, creates Vision objects and controls access to them, in orderto prevent multiple instantiation or duplication of data.� NetManager object: It creates and maintains the Session object along with a list of allparticipating hosts, on which it can ensure the existence of a HostManager. Therefore theSession object can transparently access all Vision objects. There is exactly one NetManagerper LAN domain.To encapsulate rendering and lighting classes, there are two base classes for computationservers. The design follows the active object pattern [LS96]:� Lighting object: This is the distributed equivalent of the Vision lighting subsystem. Al-gorithms can both implement monolithic lighting calculations, or act as a LightOp of a4

distributed lighting network. The interface of the Lighting object features a pair of asyn-chronous request{callback methods. The object is responsible for the concurrent executionof it's own methods. Because there may be multiple Lighting objects, in the case of using alighting network, the Session object designates the MasterLightOp and the interconnectionsthrough it's MultiLighting.� Renderer object: Every Vision object is accompanied by a Renderer object, which isresponsible for driving the rendering process. The communication between the Renderersand the lighting system is done via asynchronous request{callback methods.Figure 3 shows a running distributed system. Note that host 1 does concurrent lighting cal-culations with a lighting network. Therefore host 1 should have multiple processors to enablefunctional parallelism.
OAD/OSAgent OAD/OSAgentOAD/OSAgentOAD/OSAgent

HostManager

Vision VisionVisionVision

HostManagerHostManagerHostManager

OAD/OSAgent

HostManager

NetManager

Session

Vision Job

Job

Job

Job

NetWatch

Lighting

Light
Op

Light
Op

Light
Op

Renderer

Renderer

Renderer Renderer

MultiLighting

Figure 3: Example of a running distributed system. The NetWatch application currently monitorsthe activities of objects on host 0. Information about objects on other hosts can be accessed byinstantiating their Observer interface with a Job object.The operating system functions are accessed via the portable operating system adaption layerinterface of the ACE library [Sch94]. The communication and remote object creation is done usingthe CORBA implementation VisiBroker of Inprise Corp. [VG98]. To facilitate further developmentand maintenance, the design of the base classes follows the guidelines of several design patterns[GHJV95] [CS98] [LS96] [SHP97] [McK95].3.1 Points of asynchronous communicationThe class de�nitions of the distributed system above, allow multiple points of parallelization anddistribution. The system is con�gured by Tcl{Scripts that are parsed by a Tcl{Interpreter in every5

Vision object. The integration of the CORBA interface into the base classes of both Rendererand lighting objects, allows all implementations to access remote CORBA objects through theasynchronous request{callback interface. The whole system is started by a small C{programlaunching the �rst Vision object and registering it with the CORBA ORB.The �rst possibility to work data{parallel, is within the Renderer object. The Session objectcon�gures one of them to act as MasterRenderer, who distributes the work asynchronously ina data{parallel way, and collects the results. All the slave Renderers compute intersections withobjects of the scene and call the MasterLightOp to perform lighting calculations at the intersectionpoints. The partitioning of the image by the MasterRenderer is implemented by subclasses of theRenderer base class, which allows di�erent scheduling strategies.Within the setup phase of a LightOp, some implementations need to preprocess the geometry:for example, �nite element algorithms subdivide surfaces, calculate visibility or compute energytransfer between surfaces and volumes. This can be quite time consuming. When using a lightingnetwork, the distributed system o�ers a second possibility of parallelization: it calls all setup andpreprocessing methods in parallel on all LightOps.Third, the communication between the Renderers and the MasterLightOp is asynchronous too,as is the communication between two LightOps. This allows requests to be forwarded very easy atpoints, where the graph of a lighting network splits, by just reassigning the header of the requestpacket. Because the Vision framework encapsulates data in \Smart Objects" [Slu96, section 5.3.4],speculative or lazy evaluation can be performed. The asynchronous request{callback communica-tion methods support this feature, by returning the length of the servers request queue. Clientstherefore can choose which server to ask, if there is more than one o�ering the service. Alterna-tively they can adjust the size of request packets, or switch from speculative to lazy evaluationthrough using another type of Smart Object for the query.3.2 Distributed Lighting NetworksThe \natural" encapsulation of lighting algorithms and data within a lighting network enablesthe use of this functional decomposition for distribution purposes. Besides the speedup potential,putting the LightOps on di�erent hosts allows each one to use the whole memory of the system.Basically, there are three ways to make a lighting algorithm known to the distributed system.1. The lighting subsystem does not try to do functional distribution of the lighting calculations.The constructor of this special lighting object just serializes and forwards all requests in asynchronous manner to the traditional lighting object, that was instantiated by the sceneparser, a Tcl{Script or some other default resource. This can be a single traditional LightOpor the MasterLightOp of a traditional lighting network. To speed up computation, theexecution is done multi{threaded on multi{processor machines.The bene�t of this approach is, that developers of traditional LightOps can get a speedupwhen testing their implementation. Additionally, the creation of preview images with lowcomplexity (local) lighting is accelerated by distributing the intersection calculation of theRenderers.2. A lighting algorithm is completely re{implemented, in order to take advantage of internalmulti{threading, special hardware or communication to third{party CORBA objects. Devel-opers can reuse all traditional Vision classes as well as all facilities of the distributed systemextension.This is the most powerful possibility of creating a lighting object for the distributed system.It does however require knowledge about its design and behavior.3. The setup script instructs the Vision object to wrap a traditional LightOp implementa-tion with a special lighting object, which adds the ability to act as a distributed lightingobject. This is accomplished by a special implementation of a distributed Smart Object,wrapping traditional Smart Objects to form \the upper half" of the wrapper, through which6

the traditional LightOp calls it's predecessor in the lighting network. Therefore, it's to-tally transparent to the traditional LightOp, whether he's situated in a traditional lightingnetwork, or in a distributed one.This is the easiest way of building a distributed lighting network, as it requires no program-ming e�ort. Furthermore, it is very
exible, in that the whole con�guration is done withinTcl{scripts at system startup. Developers of lighting algorithms, that don't o�er muchchance to be parallelized successfully, need not to know anything about the distributedsystem in order to use it.4 ResultsThis section demonstrates the
exibility of the distributed Vision framework, by discussing someexample con�gurations and the asynchronous communication paradigm. Using the base classesdescribed above, several distributed LightOps have been implemented for speci�c purposes. Inorder to reuse the traditional LightOp implementations e�ciently, two Multiplexer helper classesare available. They can multiplex request packets onto a pool of identical (distributed) LightOps,making them look like a single LightOp to the rest of the lighting network. There are di�erentscheduling strategies available for the management of the request pool. Figure 4 shows the sceneused for the measurements throughout this report.

Figure 4: This scene was used for all the measurements in this report.
7

4.1 E�ciency of asynchronous communicationAsynchronous request{callback communication combined with multi{threaded clients and serversallows a maximum of parallelism for the LightOps of a distributed lighting network. Table 1compares a small network, using asynchronous requests, with a equivalent network, using wrappedtraditional LightOps. The latter call their predecessor through the synchronous interface fortraditional (non{distributed) lighting networks. Both examples use the same host con�guration,which is done at Session setup. The last line shows the total execution time, measured at thecommand prompt. Table 1: E�ciency of asynchronous communicationwallclock asynchronous wrappedseconds for LightOps LightOpsSession Setup 22.26 23.37Parsing Scene 5.80 5.67Lighting Setup 1.56 1.68Renderer Setup 0.30 0.34Render Frame 1,922.06 2,916.95Total 1,977.36 2,974.9266 % 100 %The main reason for the speedup is the low number of 210 CORBA method calls over the LANin the case of asynchronous communication, compared to 128,070 synchronous invocations in thisexample. Both networks transfer 22.7 MBytes of request data through CORBA marshaling. Theoverhead of the synchronous method invocations however doesn't slow down the communicationthat much, as the 100MBits Ethernet has enough resources left2. It's the synchronous protocol,that blocks the client until the server has completed the method call. Therefore, the probabilityfor the client to wait, drops with the number of remote calls, but makes the server less responsive.As mentioned in section 3.1, the client implementation can adjust the size of the request packets,to balance this.4.2 Optimizing standard renderingTo optimize rendering times in the case of calculating previews, as mentioned in section 3.2, thefollowing example uses 4 hosts with a total of 8 processors:SGI Onyx SGI Onyx SGI O2 SGI O2processor number 4 2 1 1R10000 MHz 196 195 195 195Vision object instances 1 1 1 2CORBA client �Renderer � � � �Lighting � �The lighting hosts execute a traditional implementation of a Irradiance Gradients LightOp.Con�guring this system, required just to name the hosts and the Lightop with it's parameters in astandard resource �le. The Tcl{scripts for system setup took care of distributing the objects. TheSession object uses a Multiplexer to pool the lighting hosts. This distributed system is comparedto the traditional Vision system (single thread of control), running on the fastest machine andcalculating lighting with the same LightOp implementation.2the example network transfers 23MByte3;000s � 64 kBits net data8

MUX 2

Ray-Tracer

Ray-Tracer

MUX 1

Lighting

Irradiance

Irradiance
Gradients

Ray-Tracer

Gradients
Lighting

Ray-Tracer

(a) distributed System
Lighting

Irradiance
GradientsRay-Tracer

(b) traditional Visionwallclock distributed traditionalseconds for System VisionSession Setup 31.91 -Parsing Scene 5.61 -Lighting Setup 0.14 -Renderer Setup 0.36 -Render Frame 317.03 2,359.20Total 387.41 2,380.1516 % 100 %The speedup obtained is quite near the theoretical maximum of 12.5 %. The overhead of� 90 seconds consists of 30 seconds Session setup, 5 seconds of additional parsing on the CORBAstartup client and another 5 seconds delay for allowing the hosts to clean up the CORBA objects,before the main CORBA startup client shuts down all Vision instances. This results in a overheadof � 13 % during the rendering phase for the distributed system.4.3 Optimizing complex lightingThe functional decomposition of a lighting network o�ers the biggest potential for distributionand parallelization, at the risk of high communication costs. As shown earlier, the asynchronousrequest{callback communication paradigm is able to provide a solution for that problem. Thefollowing example uses 6 hosts with a total of 11 processors.SGI Octane Onyx Onyx Octane 2� O2# processors 2 2 4 1 2R10000 MHz 250 195 196 175 195Vision instances 2 1 1 1 2Renderer 2Lighting PhotonMap PhotonMap Irrad. Grad., PhotonMap -Direct, CombineIn this setup, the reconstruction method of the Photon Map LightOp takes much more time toprocess a request, than the other LightOps of the lighting network. Consequently, a multiplexer isused to distribute this LightOp onto 3 hosts. In contrast, the three other LightOps are executedon a multi-processor machine, because their reconstruction method is fast and the communicationbetween them can be optimized, if the CORBA implementation supports object collocation. Inorder to drive this complex lighting subsystem, two hosts execute rendering objects controlled bya multiplexer in a data-parallel way.
9

Host 4,5,6Host 3

Tracer

Host 1+2

Ray MultiplexerCombine

Irradiance
Gradients

Photon
Map

Lighting
Multi-

Direct

Photon
Map(c) distributed System Irradiance

Tracer

Ray

Gradients

Lighting

Multi Photon MapCombine

Direct

(d) traditional Visionwallclock distributed traditionalseconds for System VisionSession Setup 28.05 -Parsing Scene 7.47 -Lighting Setup 3.20 -Renderer Setup 0.28 -Render Frame 3,026.28 5,096.62Total 3,081.86 5,186.0759 % 100 %The speedup obtained by this setup is not as good as one would expect. This mainly due toprocess idle times if for example the calculation of one upstream LightOp is su�ciently delayed.Since the underlying Lighting Networks is entirely pull-driven, the pipeline is blocked. We tryto cope with that problem to some extent by allowing the asynchronous interface to drive threestreams at a time.This example shows that there are cases where the full transparency of the distribution infras-tructure cannot hide inherent limitations due to the communication patterns of existing objects.Note however, that this behavior is mostly a problem of the non distribution aware algorithms ofthe lighting network, and not so much a general drawback of the distribution framework. How-ever, even with the very limited success, we still get some speed-up without any change to theapplication logic.Apart from that, one has also to take into account, that while a traditional system performsquite well in this case in terms of execution speed, it is severely limited by the host's memoryresources. Especially the PhotonMap LightOp needs to store many photons that have been shotinto the scene when working with large scene descriptions. The distributed PhotonMap LightOpsin this example have the memory of three hosts to their disposition. Furthermore, the initialshooting of particles is done in parallel, reducing the Lighting setup time needed to one �fth(there are 5 processors on the three hosts), which is of great value when simulating high qualitycaustics.Although there certainly is a price to pay for the
exibility of our distribution strategy, weobtain a great
exibility for con�guring the distribution strategies and adapt the system to thechallenges of a speci�c lighting network.5 DiscussionThe distribution extension imposes no limitations on the possibilities of the Vision framework. Thisprecludes optimizations of global system state and data transport strategies, based on knowledge10

about the implementation of a Lighting object. For example, the sequence of con�guration callsmade during the setup phase is �xed, and can only proceed step by step on completion by allLightOps. Because a lighting network employs many di�erent LightOp implementations, chancesare, that each one needs a long time to process in a di�erent step, without depending on others.Future work is targeted to examine this problem, and provide a automatic on{demand locking ofthe general program path by the LightOp, that depends on global state information.The current implementation of the distribution extension uses the Basic Object Adapter (BOA)on the server side. The new Portable Object Adapter (POA) seems to o�er substantial improve-ments. There is ongoing research, to change the distribution extension to use the POA. This willreduce programming complexity and provide improved support for persistent servers, which areable to continue calculations in case of crashes, or reuse lighting information for image sequences, ifthe scene description hasn't changed. Additionally, switching to TAO [TAO97] promises to speedup communication, and to integrate other UNIX dialects.The biggest bene�t of the distribution extension is the capability to provide support for bothdistribution and parallelization for programmers of advanced lighting algorithms, while beingcompletely transparent to developers of traditional LightOps. The con�guration via Tcl{scriptso�ers the most
exible and fastest way to experiment with the composition of lighting algorithms,or with testing a new implementation. The multi{level building blocks structure allows eachuser to view the system at a granularity, convenient for his purposes: someone concerned withgeometrical issues or intersection computation, can forget about all what's behind the lightingsubsystem interface, and vice{versa. When testing a new algorithm, the distribution system canbe con�gured to wrap the implementation. This makes the distributed Vision framework uniquein the �eld of physically based lighting simulation.6 ConclusionThis technical report presents a case study of an integrated and application-oriented approach todistribution and parallelization for rendering and lighting computation on the Vision renderingframework. The use of CORBA and the implementation of the distribution functions within baseclasses, makes distribution issues totally transparent for a speci�c implementation. Using thelighting networks technique, functional parallelism of the LightOps is possible. Several implemen-tations of distributed LightOps have been created.The distribution system extension has proved to be stable, with well de�ned interfaces, with-out imposing any limitations on the possibilities of the Vision framework. Distributed lightingnetworks can be constructed and con�gured by Tcl{scripts. The
exible structure allows the con-�guration of a distributed system for di�erent purposes, ranging from speeding up previews toexperimenting with complex lighting networks.Object{oriented programming, the use of design patterns and of the ACE library for encapsu-lating system calls, make the Vision framework and the distribution extension portable to a widerange of platforms. The
exibility of the Vision framework makes it a ideal tool for research andeducation. The distributed system extension adds e�ciency for production environments.References[Boo94] Grady Booch. Object-Oriented Analysis and Design with Applications. Benjamin/Cummings,Redwood City, CA, second edition, 1994.[CRMT91] S. E. Chen, H. E. Rushmeier, G. Miller, and D. Turner. A progressive multi-pass method forglobal illumination. Computer Graphics, 25(4):165{174, July 1991. SIGGRAPH '91 conferenceproceedings.[CS98] Chris Cleeland and Douglas C. Schmidt. External Polymorphism | An Object StructuralPattern for Transparently Extending C++ Concrete Data Types. C++ Report Magazine,September 1998. http://www.cs.wustl.edu/�schmidt/C++-EP.ps.gz.11

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addision-Wesley, Reading, MA, �rst edition, 1995.[Kaj86] James T. Kajiya. The rendering equation. Computer Graphics, 20(4):143{150, August 1986.SIGGRAPH '86 conference proceedings.[LS96] R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Behavioral Pat-tern for Concurrent Programming. In James O. Coplien, John Vlissides, and Norm Kerth,editors, Pattern Languages of Program Design 2. Addison-Wesley, Reading, MA, 1996.http://www.cs.wustl.edu/�schmidt/Active-Objects.ps.gz.[McK95] Paul E. McKenney. Selecting locking primitives for parallel programs. Technical report,Sequent Computer Systems, Inc., 1995. http://c2.com/ppr/mutex/mutexpat.html.[Peu98] Thomas Peuker. Distribution and Parallelization of Rendering Computations | Verteilungund Parallelisierung von Bildsyntheseberechnungen. Masters thesis (Diplomarbeit), ComputerGraphics Group, University of Erlangen-N�urnberg, Germany, 1998.[Rog98] David F. Rogers. Procedural Elements for Computer Graphics. McGraw{Hill, second edition,1998.[Sch94] Douglas C. Schmidt. The ADAPTIVE Communication Environment: An Object-OrientedNetwork Programming Toolkit for Developing Communication Software. In Proceedings ofthe 12th Annual Sun Users Group Conference, pages 214{225, San Francisco, CA, June 1994.SUG. http://www.cs.wustl.edu/�schmidt/SUG-94.ps.gz.[SHP97] Douglas C. Schmidt, Timothy H. Harrison, and Nat Pryce. Thread-speci�c storage forC/C++. In Pattern Languages of Programming '97 conference proceedings, September 1997.http://www.cs.wustl.edu/�schmidt/TSS-pattern.ps.gz.[Slu96] Philipp Slusallek. Vision | an Architecture for Physically-Based Rendering. PhD thesis,Computer Graphics Group, University of Erlangen-N�urnberg, Germany, 1996.[SP94] F. X. Sillion and C. Puech. Radiosity & Global Illumination. Morgan Kaufmann, 1994.[SSH+98] Philipp Slusallek, Marc Stamminger, Wolfgang Heidrich, Jan-Christian Popp, and Hans-PeterSeidel. Composite lighting simulations with lighting networks. IEEE Computer Graphics andApplications, 18(2), March/April 1998.[TAO97] Computer Science Department, Washington University at St. Louis. Real-time CORBA withTAO (The ACE ORB), 1997. http://www.cs.wustl.edu/�schmidt/TAO.html.[VG98] Inprise, Corp. Visigenic Products, 1998. http://www.inprise.com/visibroker.

12

